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Further Logics

In this section we look into yet further logics. These are motivated both by
theory and applications.
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Definition 7.1
Let τ be a relational vocabulary. A conjunctive query (or CQ) is a first-
order τ -formula ∃x1 . . . ∃xn χ where χ is a conjunction of relational atoms
R(t1, . . . tn) with R ∈ τ and t1, . . . , tn are τ -terms. Conjunctive queries do
not contain equality atoms t1 = t2. If a conjunctive query does not have
free variables, it is called a Boolean conjunctive query.
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Conjunctive queries are used in, e.g., database theory. For example, let τ
be the relational vocabulary over the relational vocabulary

{Book,A1, . . . ,An,B1, . . . ,Bm, ,Y1, . . .Y`}

where

I Book is a ternary relation symbol.
I A1, . . . ,An are constant symbols (intuitively denoting author names).
I B1, . . . ,Bm are constant symbols (book names).
I Y1, . . . ,Y` are constant symbols (denoting the years from, say, 1700

to 2020.)



Further Logics

Let D be a finite τ -model whose domain is

{AD
1 , . . . ,AD

n ,BD
1 , . . . ,BD

m ,YD
1 , . . . ,YD

` }

such that the elements are separate, i.e., the domain size is n +m + `, and
Book is some ternary relaition containing some seet of triples (X ,Y ,Z )
such that

I X is one of the elements AD
i ,

I Y is one of the elements BD
j ,

I Z is one of the elements YD
k .
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The finite model D can be seen as a database, possibly encoding the con-
tents of some small library. Now, let the constant symbol Ai be the name
of some author, say, F. Scott Fitzgerald. Now the conjunctive query

ϕ(x) = ∃y Book(Ai , x , y)

returns the unary relation ϕD containing precisely the book titles authored
by F. Scott Fitzgerald and stored in the library D.

Let D′ be the expansion of the τ -model D to the vocabulary τ ∪{Album}.
We assume that some of the constant symbols B1, . . . ,Bm can also be
album names, and we let AlbumD′ contain triples (X ,Y ,Z ) where X is
one of the elements AD

i = AD′
i while Y is some element BD

j = BD′
j and Z

some element YD
k = YD′

k . Write a conjunctive query that returns the set
of people who have published both a book and an album during the same
year.
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The query

χ(x) = ∃u∃y∃z
(
Book(x , u, y) ∧Album(x , z , y)

)
.

returns the set of people who have published a book and an album during
some single year.
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Let D a finite model over the vocabulary {Parent_of} where Parent_of is
a binary relation. Intuitively, D is a simple genealogical database of where
the elements are people and Parent_of contains the pairs (u, v) such that
u is a parent of v . Now the conjunctive query

ϕ(x , y) = ∃z(Parent_of(x , z) ∧ Parent_of(z , y))

returns the pairs (u, v) such that u is a grand parent of v .
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Conjunctive queries are the most central querying framework studied in
database theory. However, conjunctive queries are a rather weak fragment
of first-order logic and thus come with obvious limitations. Indeed, con-
sider the genealogical database from the previous slide. Consider the query
ψancestor (x , y) that returns those pairs (u, v) such that u is an ancestor of
v . We cannot write this as a conjunctive query, as we cannot define the
transitive closure of a first-order formula even in first-order logic. Thus a
CQ, in particular, is definitely not expressive enough.
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For writing the ancestor query, we need a logic with capacities that go
beyond that of first-order logic. For example the LFP-formula

[lfp(S,(x ,y))Parent_of(x , y) ∨ ∃z(Parent_of(x , z) ∧ S(z , y))](x , y)

does the job. This is just the good old formula defining the transitive
closure. However, for some purposes, LFP tends to be too expressive (as
very expressive logics tend to be difficult and slow to work with in relation
to applications, requiring generally too slow truth checking algorithms). A
paradigmatic framework that srikes a balance between conjunctive queries
and LFP is Datalog which combines the idea of conjunctive queries and
iterative fixed point constructions. We shall look into Datalog.
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Datalog is somewhat technically messy and thus Datalog will not
appear in the exam but may appear in the exercises.
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Let τ be a relational vocabulary. A Datalog-program is a list

X1(x1,1, . . . , x1,n1) : − ϕ1

.

.

.

Xm(xm,1, . . . , xm,nm ) : − ϕm

where each Xk is an nk -ary relation symbol not in τ and each ϕk is a CQ over
the vocabulary τ ∪ {X1, . . . ,Xm} and in the free variables (xk,1, . . . , xk,nk ).
The relation symbols X1, . . . ,Xm are called IDBs (intensional databases)
and thus sometimes the relation symbols in τ are called EDBs (extensional
databases). Note carefully, some of the symbols X1, . . . ,Xm can be the
same (see the next page for an example where two of the first lines of a
program begin with X1).



Further Logics
Each line

Xi (xi ,1, . . . , xi ,ni ) : − ϕi

of a Datalog-program is called a rule. The rule consists of the head
Xi (xi ,1, . . . , xi ,ni ), the symbol : − and the body ϕi which is a conjunctive
query with exactly the free variables that occur also in the head. A rule
with the head variable equal to the IDB Xi is called an Xi -rule. There
can be several Xi -rules in the same program. For example, the following
Datalog-program over the vocabulary {P,S,R}

X1(x , y) : − Rxy
X1(x , y) : − ∃z(P(x) ∧ Sxzy ∧ X1(x , y) ∧ X2(x , x))
X2(x , y) : − ∃z(X2(y , x) ∧ Rzz ∧ X3(x))
X3(x) : − ∃z∃u(Rxu ∧ X1(x , z) ∧ X2(x , u))

contains two X1-rules. Note also that even though this is a Datalog-
program over the vocabulary {R, S,P}, the CQs are allowed to contain
relation symbols that are IDBs, i.e., the IDBs X1,X2,X3 are allowed to
occur in the rule bodies in addition to the EDBs R, S,P.
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Note also that, as required, the heads of each rule of the program

X1(x , y) : − Rxy
X1(x , y) : − ∃z(P(x) ∧ Sxzy ∧ X1(x , y) ∧ X2(x , x))
X2(x , y) : − ∃z(X2(y , x) ∧ Rzz ∧ X3(x))
X3(x) : − ∃z∃u(Rxu ∧ X1(x , z) ∧ X2(x , u))

contain precisely the variables that occur free in the corresponding body.
For example, the body of the second rule is

∃z(P(x) ∧ Sxzy ∧ X1(x , y) ∧ X2(x , x)),

and the free variables of this CQ are x , y , the variables that occur also in
the head of that rule.
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Before we define the semantics of Datalog, let us consider the following
simple example program.

X1(x) : − P(x)
X2(x) : − Q(x)
X1(x) : − ∃y(Rxy ∧ X1(y) ∧ X2(y))

This program is evaluated as follows on a τ -model A, where {P,Q,R} ⊆ τ .
Let X 0

1 be the empty unary relation ∅, and similarly, let X 0
2 also be the empty

unary relation. These are both unary because X1(x) and X2(x) both have
the one single free variable x . Now suppose we have defined Xn

1 and Xn
2

to be some unary relations over A. Let A∗ be the model obtained from A
by expanding the vocabulary by X1 and X2 and interpreting these relation
symbols as the relations Xn

1 and Xn
2 . We let Xn+1

1 be equal to the relation

{a ∈ A | A∗, {(x , a)} |= P(x) ∨ ∃y(Rxy ∧ X1(y) ∧ X2(y)) }

where {(x , a)} is of course a variable assignment.
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Intuitively, we therefore obtain Xn+1
1 by taking the union of the relations

that the X1-rule bodies define when each IDB-symbol Xi in the rule bodies
is interpreted as Xn

i . Shortly

1. interpret each Xi as Xn
i ,

2. evaluate the rule bodies to obtain the relations defined by the bodies,
and

3. let Xn+1
i be the union of the relations whose head variable Xi is.

Doing this, we observe that Xn+1
2 is interpreted as the relation defined by

Q(x), so it is somewhat less interesting here than Xn+1
1 .
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To define the semantics of Datalog formally, let A be a τ -model. For
each of the IDBs Xi ∈ {X1, . . . ,Xm}, we define a corresponding operator
FXi . To define the operators, let ar(Xi ) denote the arity of Xi . The operator
FXi is the function

FXi : P(Aar(X1))× · · · × P(Aar(Xm)) → P(Aar(Xi ))

such that for any input relations U1, . . . ,Um of the appropriate arities (and
over A), the function FXi outputs the relation...
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...the relation

{ (a1, . . . , aar(Xi )) |
A[X1 7→ U1, . . . ,Xm 7→ Um], {(xi ,1, a1), . . . , (xi ,ar(Xi ), aar(Xi ))} |=

∨
i∈I
ϕi }

where
∨
i∈I
ϕi is the disjunction of those rule bodies that have Xi as head.

Note indeed that {(xi ,1, a1), . . . , (xi ,ar(Xi ), aar(Xi ))} is simply a variable as-
signment and A[X1 7→ U1, . . . ,Xm 7→ Um] the expansion of A with the
symbols X1, . . . ,Xm interpreted as the relations U1, . . . ,Um. (If some sym-
bol X appears more than once in the list X1, . . . ,Xm but two corresponding
relations Up and Uq are different in the list U1, . . . ,Um, then the output of
the operator FXi can be defined arbitrarily on that input tuple (U1, . . . ,Um).
Such an output tuple is irrelevant for us here.)
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We define X 0
i = ∅, i.e., the empty relation of the same arity as Xi . We

define Xn+1
i to be FXi (Xn

1 , . . . ,Xn
m).
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Note that, as defined so far, a Datalog-program simply corresponds to
a system that makes the relations corresponding to the rule head variables
X1, . . . ,Xm evolve in a stepwise fashion. This is ok, but we would also like
to make sense of statements of the form A |= Π, where Π is a Datalog-
program. To do this, the first step is to allow nullary IDBs.

Let A be a model. A nullary relation Y over A is a set Y ⊆ A0 = {∅}.
Thus either Y = ∅ or Y = {∅}. If Y = ∅, we associate it with the truth
value false, and if Y = {∅}, we associate it with the truth value true. We
typically write Y = > and Y = ⊥ instead of Y = {∅} and Y = ∅. A
model A whose vocabulary contains a nullary relation symbol Y , satisfies
the formula Y (i.e., A |= Y ) if and only if Y is interpreted as >.
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The syntax of Datalog with nullary IDB is the same as the syntax spec-
ified above, with the addition that nullary IDBs can be head variables and
the bodies of rules with nullary head variables must be Boolean conjunctive
queries, i.e., conjunctive queries without free variables. For example

X1(x) : − P(x)
X2 : − ∃xQ(x)
X3 : − ∃x∃y(Rxy ∧ X1(y) ∧ X2)

is a Datalog-program where the IDBs X2 and X3 are nullary and thus
the corresponding CQs have no free variables.
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Also the semantics remains the same. The nullary IDBs are first equal to
⊥, and then we start iterating (i.e., running) the program. A nullary IDB
Xi becomes true if one of the bodies of the Xi -rules becomes true.
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Formally, let A be a τ -model. Let Π be program with m rules and with the
IDBs X1, . . . ,Xm some of which can be nullary (and some of these IDBs
can be the same). For each of the IDBs Xi ∈ {X1, . . . ,Xm}, we define a
corresponding operator FXi . Let ar(Xi ) denote the arity of Xi . The operator
FXi is the function

FXi : P(Aar(X1))× · · · × P(Aar(Xm)) → P(Aar(Xi ))

such that for any input relations U1, . . . ,Um of the appropriate arities (and
over A), the function FXi outputs the relation

{ (a1, . . . , aar(Xi )) |
A[X1 7→ U1, . . . ,Xm 7→ Um], {(xi ,1, a1), . . . , (xi ,ar(Xi ), aar(Xi ))} |=

∨
i∈I
ϕi }

where
∨

i∈I ϕi is the disjunction of the rule bodies whose head IDB is Xi .
Note that if Xj is nullary, then A[X1 7→ U1, . . . ,Xm 7→ Um] |= Xj if and
only if Uj = >. Note also that a nullary IDB Xj evaluates to > if at least
one of the Xj -rules has a body that evaluates to true. Continues...
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Note also that if Xi is nullary, then FXi outputs > if

A[X1 7→ U1, . . . ,Xm 7→ Um] |=
∨
i∈I
ϕi

and otherwise FXi outputs ⊥.
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If Xi is nullary, we define X 0
i = ⊥, and when Xi is not nullary, we define

X 0
i = ∅, i.e., the empty relation of the same arity as Xi . We define Xn+1

i
to be FXi (Xn

1 , . . . ,Xn
m) in both cases (nullary and not nullary).
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In addition to the usual IDBs, we let Xgoal be a special, distinguished nullary
IDB. If Π is a Datalog-program, we define that A |= Π if there exists
some n such that Xn

goal = >.
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Let P and Q be unary relations and R a binary relation. Define a Datalog-
program Π such that A |= Π if and only if there is some node u in P and
some node v in Q such that u = v or (u, v) ∈ R or

(u, a1) ∈ R ∧ (a1, a2) ∈ R ∧ · · · ∧ (ai , v) ∈ R

for some i .
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X1(x) : − Q(x)
X1(x) : − ∃y(Rxy ∧ X1(x))
Xgoal : − ∃x(Px ∧ X1(x))



Further Logics

Write a Datalog-program Π such that A |= Π if the binary relation S
has a tuple (u, v) ∈ S such that the inverse tuple (v , u) belongs to the
transitive closure of the binary relation R.
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X (x , y) : − R(x , y)
X (x , y) : − ∃z(R(x , z) ∧ X (z , y))
Xgoal : − ∃x∃y(Syx ∧ X (x , y))
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Write a Datalog-program Π such that G |= Π if the graph G is not
two-colorable.
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Odd(x , y) : − E (x , y)
Odd(x , y) : − ∃z∃u(E (x , z) ∧ E (z , u) ∧ Odd(u, y))
Xgoal : − ∃xOdd(x , x)
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To simplify notation when writing Datalog programs, we typically do not
write the existential quantifier ∃x explicitly, as it is clear that every variable
that is not in the head must be existentially quantified. Also, we can use
commas instead of conjunctions. Thus

Odd(x , y) : − E (x , y)
Odd(x , y) : − ∃z∃u(E (x , z) ∧ E (z , u) ∧ Odd(u, y))
Xgoal : − ∃xOdd(x , x)

becomes

Odd(x , y) : − E (x , y)
Odd(x , y) : − E (x , z),E (z , u),Odd(u, y)
Xgoal : − Odd(x , x)
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Despite their limitations, CQs are nevertheless a highly flexible framework
capable of expressing the most typical queries. Also, being simple (and not
too expressive), they are efficient to implement. One of the most common
extensions of CQs (and still a fragment of FO unlike Datalog) is the
collection of queries known as UCQs, with UCQ standing for an union
of conjunctive queries. A UCQ is simply a disjunction of conjunctive
queries. A query is a Boolean UCQ if it has no free variables.



Further Logics

Consider the vocabulary {P,Q} where both P and Q are unary. Now,
Px ∨ Qx is a simple UCQ that returns all elements in P and Q. It is easy
to see that there exists no CQ that can do that job.



Further Logics: Modal Logic

We next discuss modal logic, which is probably the most popular framework
of logics from the point of view of current applications. The field has its
roots in philosophy, and the related research is still very active. However,
the main applications nowadays lie in computer science—in particulal arti-
ficial intelligence, verification and knowledge representation. There are also
various systems of modal logic that deal with the foundations of mathe-
matics, e.g., provability logic that deals with the notions of provability and
non-provability.
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Modal logic is actually not a single logic, but a framework for different kinds
of systems with similar features. However, there is a core modal logic, often
also (confusingly) called modal logic. We shall call this core system ML.
Let PROP be a countably infinite set of unary relation symbols, called
proposition symbols in modal logic. The set of formulae of ML is the
smallest set F such that the following conditions are satisfied.

1. If P ∈ PROP, then P ∈ F .
2. If ϕ ∈ F , then ¬ϕ ∈ F .
3. If ϕ,ψ ∈ F , then ϕ ∧ ψ ∈ F .
4. If ϕ ∈ F , then ♦ϕ ∈ F .
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Recall that a Kripke model or Kripke structure is a model

M = (W ,R, (Pi )i∈I)

where R ⊆W ×W is a binary relation and each Pi ⊆W is a unary relation.
The modal logic ML is interpreted with respect to pointed models (M,w),
where M is a Kripke model and w ∈W is an element in the domain W of
the Kripke model.
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The semantics of the modal logic ML is given as follows.

(M,w) |= Pi ⇔ w ∈ PM
i

(M,w) |= ϕ ∧ ψ ⇔ (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= ¬ϕ ⇔ (M,w) 6|= ϕ
(M,w) |= ♦ϕ ⇔ there exists some v such that

(w , v) ∈ RM and (M, v) |= ϕ
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We use the familiar abbreviations
I ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ),
I ϕ→ ψ = ¬ϕ ∨ ψ,
I ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ).

We also use the abbreviation �ϕ = ¬♦¬ϕ.
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Modal logic was originally motivated by the philosophy of the notions of
possibility and necessity. In a Kripke model M = (W ,R, (Pi )i=I), every
domain element w ∈W is considered to be a world, or a state of affairs.
Indeed, we say that w satisfies the proposition Pi if and only if w ∈ PM

(i.e., we have (M,w) |= Pi). Thus w is associated with precisely those
propositions that w satisfies.
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Let Pw denote the set of propositions satisfied by w . The world w , or the
state of affairs w , is thus specified by—or somehow identified with—the
set Pw that w satisfies. For example, suppose

(Pi )i∈I = (P1, P2) = (It_is_raining, it_is_shining),

so we have two propositions, one stating that it is raining and the other
one that it is shining. Suppose W = {w1,w2} such that w1 satisfies P1
and ¬P2 while w2 satisfies ¬P1 and P2. Thus we have two worlds, one
where it is raining and one where it is shining.
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Now, suppose (M,w) |= ♦Pi . This means that there exists some v such
that (w , v) ∈ RM and we have (M, v) |= Pi . The inclusion (w , v) ∈ RM is
interpreted to mean that v is a possible alternative (to w) state of affairs.
Thereby (M,w) |= ♦Pi states that there exists an alternative (to w) state
of affairs v that satisfies Pi . In other words, (M,w) |= ♦Pi states that in
w , it is possible that Pi . The operator ♦ is thus called the possibility
operator. We can read ♦Pi as ‘it is possible that Pi ’. Similarly for any
formula ϕ of ML, we can read ♦ϕ as ‘it is possible that ϕ’.
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Recall that � is an abbreviation for ¬♦¬. Thereby �Pi states that ¬Pi
is impossible, i.e., Pi is necessarily true. Thus � is called the necessity
operator, and we can give �Pi the reading that ’it is necessary that Pi ’.

The possibility operator ♦ is also called the diamond and the necessity
operator � the box.

In addition to using proposition symbols Pi with indices i , we often use
symbols P and Q to denote propositions.



Further Logics: Modal Logic

Consider the pictured Kripke model with domain W = {w0,w1,w2,w3}
and such that the proposition P is satisfied by w0 only, i.e., PM = {w0}.

M: P

w1 w2 w3

w0

Now (M,w0) |= ♦¬P because there exists a world accessible (in one step
from w0 via R) that satisfies ¬P. In other words, the condition

∃v : (w , v) ∈ R and (M, v) |= ¬P

holds. This is because, e.g., (M,w1) |= ¬P.
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Let us further investigate the model M, pictured again below.

M: P

w1 w2 w3

w0

We have (M,w0) |= �¬P because for all worlds v accessible (in one step
from w0 via R), we have (M, v) |= ¬P.

Exercise: For each world v ∈ {w0,w1,w2.w3}, find a formula ϕv satisfied
only by v but not the other worlds.
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A possible solution:

I (M,w0) |= P while none of the other worlds satisfies P.
I (M,w1) |= ♦P while no other world satisfies this formula.
I (M,w2) |= ¬P ∧ ♦♦P while no other world satisfies this formula.
I (M,w3) |= ¬P ∧ ���P while no other world satisfies this formula.



Further Logics: Modal Logic
The modal logic ML is a variable-free system. However, it can be conceived
simply as a simple fragment of first-order logic. The standard translation
is a function that maps formulae of ML to formulae of first-order logic as
follows.

I Stx (P) = P(x)
I Sty (P) = P(y)
I Stx (¬ϕ) = ¬Stx (ϕ)
I Sty (¬ϕ) = ¬Sty (ϕ)
I Stx (ϕ ∧ ψ) = Stx (ϕ) ∧ Stx (ψ)
I Sty (ϕ ∧ ψ) = Sty (ϕ) ∧ Sty (ψ)
I Stx (♦ϕ) = ∃y

(
R(x , y) ∧ Sty (ϕ)

)
I Sty (♦ϕ) = ∃x

(
R(y , x) ∧ Stx (ϕ)

)
Note that Stx (ϕ) has the free variable x and Sty (ϕ) the free variable y .
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This translation leads to the following theorem.

Theorem 7.2
Let ϕ be a formula of ML. Consider a Kripke model M and an arbitrary
variable assignment f . Suppose M contains a point w. We have

(M,w) |= ϕ ⇔ M, f [x 7→ w ] |= Stx (ϕ).

Before justifying the theorem, notice that intuitively, the theorem states
that in some sense ML can be seen as a fragment of first-order logic FO.
At least the modal logic ML translates into formulae ψ(x) = Stx (ϕ) of
modal logic that can—in some sense—be seen equivalent to the original
formulae ϕ.
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Proof. For proving Theorem 7.2, simply recall the semantics of ML:

(M,w) |= Pi ⇔ w ∈ PM
i

(M,w) |= ϕ ∧ ψ ⇔ (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= ¬ϕ ⇔ (M,w) 6|= ϕ
(M,w) |= ♦ϕ ⇔ there exists some v such that

(w , v) ∈ RM and (M, v) |= ϕ

It is easy to observe that the translation St simply translates the semantics
of ML into first-order logic. The nontrivial case is the clause

Stx (♦ϕ) = ∃y
(
R(x , y) ∧ Sty (ϕ)

)
for the diamond ♦. The other cases are indeed clear.
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The most common way of proving undefinability results for ML is by using
bisimulations. A bisimulation is a binary relation Z ⊆ A× B between the
domains of two Kripke models A and B (over the same vocabulary τ) that
satisfies the following conditions.
1. If (a, b) ∈ Z , then the elements a and b satisfy the same

propositions, i.e., we have

(A, a) |= Pi ⇔ (B, b) |= Pi

for all propositions Pi in τ .
2. If (a, b) ∈ Z and (a, a′) ∈ RA, then there exists a point b′ ∈ B such

that (b, b′) ∈ RB and (a′, b′) ∈ Z .
3. If (a, b) ∈ Z and (b, b′) ∈ RB, then there exists a point a′ ∈ A such

that (a, a′) ∈ RA and (a′, b′) ∈ Z .
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Theorem 7.3
Let Z ⊆ A×B be a bisimulation between A and B. If (a, b) ∈ Z, then we
have

(A, a) |= ϕ ⇔ (B, b) |= ϕ

for all formulae ϕ of the modal logic ML.

Proof. We prove the claim by induction on the structure of formulae.
Suppose ϕ is a proposition symbol P. Then, directly by the definition of
bisimulation, (A, a) and (B, b) satisfy the same propositions. Continues...
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Now suppose ϕ is ψ ∧ χ. Now

(A, a) |= ψ ∧ χ

⇔ (A, a) |= ψ and (A, a) |= χ

ind .hypot.⇔ (B, b) |= ψ and (B, b) |= χ

⇔ (B, b) |= ψ ∧ χ.
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Now suppose ϕ is ¬ψ. We have

(A, a) |= ¬ψ

⇔ (A, a) 6|= ψ

ind .hypot.⇔ (B, b) 6|= ψ

⇔ (B, b) |= ¬ψ.
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Suppose finally that ϕ is ♦ψ. Assume that (A, a) |= ♦ψ. Thus there
exists a′ such that (a, a′) ∈ RA and (A, a′) |= ψ. By the definition of the
bisimulation relation Z , since (a, a′) ∈ RA and (a, b) ∈ Z , there exists b′
such that (b, b′) ∈ RB and (a′, b′) ∈ Z . Since (a′, b′) ∈ Z and (A, a′) |=
ψ, we have (B, b′) |= ψ by the induction hypothesis. Therefore, since
(b, b′) ∈ RB, we have (B, b) |= ♦ψ. We have therefore proved that
(A, a) |= ♦ψ ⇒ (B, b) |= ♦ψ. The converse implication is proved
similarly.
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Example 7.4
Let A = {a1, a2, a3} and B = {b1, b2} and define RA = {(a1, a2), (a1, a3)}
and RB = {(b1, b2)}. Let PA = {a2, a3} and PB = {b2}. Consider
the Kripke models A = (A,RA,PA) and B = (B,RB,PB) (sketch the
models). Consider the relation Z = {(a1, b1), (a2, b2), (a3, b2)} (sketch the
relation). This relation is clearly a bisimulation. It connects both a2 and a3
to the point b2, so (A, a2) and (A, a3) satisfy the same modal formulae as
(B, b2). The bisimulation Z also connects a1 to b1, so (A, a1) and (B, b1)
satisfy the same modal formulae.
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Definition 7.5
The modal depth md(ϕ) of a formula ϕ of ML is defined as follows.

I md(Pi ) = 0
I md(ϕ ∧ ψ) = max(md(ϕ),md(ψ))
I md(¬ϕ) = md(ϕ)
I md(♦ϕ) = md(ϕ) + 1

Therefore, the modal depth of a formula is simply the maximum nesting
depth of diamonds in the formula.
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Earlier on we proved that there exist only finitely many non-equivalent
formulae of first-order logic over a finite vocabulary τ and with quantifier-
rank at most m. The modal logic ML can be seen as a fragment of first-
order logic (recall the translation St), and therefore it is obvious that an
analogous result holds also for ML. We shall now formulate and prove that
result (without resorting to the earlier result on FO).
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Definition 7.6
Let ϕ and ψ be formulae of the modal logic ML. We say that ϕ and ψ are
equivalent if for all pointed Kripke models (A,w) and (B, u) that interpret
the proposition symbols in ϕ and ψ, we have

(A,w) |= ϕ ⇔ (B, u) |= ψ.

We denote this by writing ϕ ≡ ψ.
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Theorem 7.7
Let π ⊆ PROP be a finite, nonempty set of proposition symbols. Let
n ∈ N. There exist only finitely many non-equivalent formulae up to modal
depth n and with the proposition symbols in π. More rigorously, there exists
a finite set F of formulae of ML using the proposition symbols in π and
with modal depth up to n such that the following holds:

If ϕ is an arbitrary formula with the proposition symbols in π and with
modal depth up to n, then there exists a formula ψ ∈ F such that ϕ ≡ ψ.

Before we work through the proof, it is indeed worth noting that the claim
of the theorem follows also from Theorem 3.8.
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Proof (Sketch). Let π = {P1, . . . ,Pk}. We prove the claim by induction
on modal depth. We begin with some auxiliary definitions.

Let F be a finite set {ϕ1, . . . , ϕk} of formulae of ML. Now, a full descrip-
tion is a formula χ1 ∧ · · · ∧ χk where each χi is either ϕi or ¬ϕi . Clearly,
as in our related argument for first-order logic earlier on, we see that every
Boolean combination of formulae in F is equivalent to a disjunction of full
descriptions.1

1Note that the disjunction
∨

∅ is defined equivalent to a contradiction (as
disjunction requires that at least one of the given formulae holds). We can always
encode

∨
∅ by some formula, for example P1 ∧ ¬P1.



Further Logics: Modal Logic
Now define that a 0-type is a full description over π = {P1, . . . ,Pk}.
Recursively, suppose we have defined the set of m-types, and denote this
set by Fm. An (m + 1)-type is any formula

ψm
∧ ∧

ψ ∈ G
♦ψ

∧ ∧
ψ ∈ Fm\G

¬♦ψ

where G ⊆ Fm is a set of m-types and ψm ∈ Fm some m-type. Thus an
(m + 1)-type specifies the following:
1. The m-type ψm of the current point (of a pointed model).
2. The complete set G ⊆ Fm of m-types that are accessible via R from

the current point (i.e., positive information about m-types of directly
accessible points).

3. The complete set Fm \ G of m-types that are not accessible from the
current point via R (i.e., negative information aboutm-types of directly
accessible points).
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Thus an (m + 1)-type can be seen as a complete description of a domain
point in terms of formulae of modal depth up to (m + 1). It is not difficult
to see that therefore every formula of modal depth up to ` and with propo-
sitions in π = {P1, . . . ,Pk} is equivalent to some disjunction of `-types.
By the construction of `-types, it is easy to see that there are finitely many
`-types.
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We now informally sketch a proof that ML has the finite model property,
i.e., the property that for all formulae ϕ of ML, if there exists a (possibly
infinite) pointed model (M,w) such that (M,w) |= ϕ, then there exists a
finite model N and a point u of N such that (N, u) |= ϕ. The full details
of the argument are skipped. The argument requires an understanding of
equivalence relations and equivalence classes, so a reader not familiar with
these notions can safely skip over the argument.

So, let ϕ be a formula of ML and suppose (M,w) |= ϕ. Let π be the set
of proposition symbols in ϕ and n the modal depth md(ϕ) of ϕ. Define
an equivalence relation ∼⊆ M × M such that (u, v) ∈∼ if and only if
(M, u) and (M, v) satisfy the same n-type. (It can easily be shown that
every element u of any model A satisfies precisely one n-type.) For each
element u of M, let [u] denote the set

{v ∈ M | v satisfies the n-type of u}.

That is, [u] is the equivalence class of u with respect to ∼.
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Define the following Kripke model N.

1. The domain N is the set { [u] | u ∈ M } of equivalence classes [u] of
elements u of the model M.

2. ([u], [v ]) ∈ RN if and only if the (n − 1)-type ψn−1
v of (M, v) is such

that the n-type of (M, u) has the conjunct ♦ψn−1
v .

3. We have [u] ∈ PN if and only if the 0-type of u has the conjunct P.

It can be shown with a relatively straightforward argument (skipped here)
that

(M,w) |= ϕ ⇔ (N, [w ]) |= ϕ

holds for all formulae ϕ with proposition symbols in π and up to modal
depth n. Therefore ML indeed has the finite model property: if ϕ is true
in a pointed model (M,w), construct the model (N, [w ]) which is clearly
finite (as there are finitely many n-types) and observe that (N, [w ]) |= ϕ.


	

