
Finite model theory
5. Logics III



Fixed Point Logics and FVL

We shall next discuss fixed point logics. These can be considered to be
finitary approximants of FVL. The related theory is not difficult, but it is
technically messy at parts. The main objective of this section is to learn
to write formulae of the logic LFP (least fixed point logic), i.e., to specify
simple properties in LFP. We shall also prove some basic results concerning
monotone operators.



Fixed Point Operators

Definition 5.1
Let S be a set. An operator on S is a mapping F : P(S) → P(S). The
operator F is monotone if

X ⊆ Y ⇒ F (X ) ⊆ F (Y ).

Example 5.2
Let (S,R) be a model with a binary relation R ⊆ S×S. Define the operator
F : P(S)→ P(S) such that

F (X ) = {u ∈ S | ∃y((u, y) ∈ R ∧ y ∈ X ) }.

Thus, on the input X , the operator outputs those points that connect
directly via R to some point in X . This is a monotone operator. For assume
X ⊆ Y . Let x ∈ F (X ), so (x , y) ∈ R and y ∈ X for some y . Therefore
(x , y) ∈ R and y ∈ Y , and thus x ∈ F (Y ). Therefore F (X ) ⊆ F (Y ).



Fixed Point Operators

Example 5.3
Define F : P(S) → P(S) such that F (X ) = S \ X . This operator is not
monotone. For if S 6= ∅, then ∅ ⊆ S but F (∅) 6⊆ F (S).

Let A ⊆ S, A 6= S. Define the operator G : P(S) → P(S) such that
G(X ) = A for all X ∈ P(S). This is a monotone operator.



Fixed Point Operators

Definition 5.4
Let F : P(S)→ P(S) be an operator. A set X ⊆ S is a fixed point (or a
fixpoint) of F if F (X ) = X . The set X is the least fixed point of F , or
lfp(F ), if X is a fixed point of F and we have X ⊆ Y for all fixed points
Y of F .



Fixed Point Operators

Let F : P(S) → P(S) be an operator on a finite set S. Consider the
sequence

X 0 = ∅ and Xn+1 = F (Xn).

The sequence is inductive if it is weakly increasing, i.e., Xn ⊆ Xn+1 for all
n ∈ N.1 We write

X∞ =
⋃
i ≥ 0

X i .

1A strongly increasing sequence would have X n ⊆ X n+1 and xn+1 6= X n for all n ∈ N.
However, on a finite set, strongly increasing sequences cannot exist.



Fixed Point Operators

Example 5.5
Let (A,R) be a model where R is a binary relation over A. Define an
operator F : P(A× A)→ P(A× A) over A× A such that

F (X ) = R ∪ (R ◦ X ),

where R ◦ X is the relational composition of R and X , i.e.,

R ◦ X = {(u, v) | (u, y) ∈ R & (y , v) ∈ X for some y ∈ A}.

The operator F is monotone, for suppose that X ⊆ Y are binary relations
over A. Then (R ◦ X ) ⊆ (R ◦ Y ), so clearly F (X ) ⊆ F (Y ). Consider
the sequence X 0,X 1,X 2 . . . and its relation to the relation R. We have
X 0 = ∅ and X 1 = R. Then we have X 2 = R ∪ (R ◦ R), and continuing in
this fashion, we see that X∞ is clearly the transitive closure of R.



Fixed Point Operators

Theorem 5.6 (Knaster-Tarski)

1. Let F : P(S)→ P(S) be a monotone operator. Then F has a least
fixed point, and the least fixed point is given by

X =
⋂
{Y |F (Y ) = Y },

in other words, it is the intersection of the fixed points of F .
2. Supposing S if finite, the least fixed point of F is the set

X∞ =
⋃
n≥ 0

Xn.

Proof. Begins from the next slide...



Fixed Point Operators

Define D = {Y |F (Y ) ⊆ Y }. The set D is nonempty, as S ∈ D. Therefore⋂
D exists. Our first aim is to show that

⋂
D is a fixed point of F .

Now, let Y ∈ D. We clearly have
⋂
D ⊆ Y . Therefore

F (
⋂

D) ⊆ F (Y ) ⊆ Y

due to the monotonicity of F and definition of D. Therefore, because this
holds for an arbitary Y ∈ D, we have

F (
⋂

D) ⊆
⋂

D.

Therefore we have F (F (
⋂
D)) ⊆ F (

⋂
D) by the monotonicity of F . Thus

F (
⋂
D) ∈ D by the definition ofD. Therefore

⋂
D ⊆ F (

⋂
D). Altogether,

we have thus shown that
⋂
D = F (

⋂
D) (by establishing inclusions in both

directions). Therefore
⋂
D is a fixed point of F .



Fixed Point Operators
As

⋂
D = F (

⋂
D), the set

⋂
{Y |F (Y ) = Y } is defined (i.e., it is not an

intersection over the empty set). Trivially

{Y |F (Y ) = Y } ⊆ {Y |F (Y ) ⊆ Y } = D,

so we have ⋂
D =

⋂
{Y |F (Y ) ⊆ Y } ⊆

⋂
{Y |F (Y ) = Y }.

As we already proved that
⋂
D is a fixed point of F , it now suffices to

prove that
⋂
{Y |F (Y ) = Y } ⊆

⋂
{Y |F (Y ) ⊆ Y }, as then the set⋂

{Y |F (Y ) = Y } =
⋂
D is clearly the least fixed point, being the inter-

section of all fixed points. The set
⋂
D being a fixed point, we know that⋂

D = F (
⋂
D), so

⋂
D ∈ {Y |F (Y ) = Y }. Hence⋂

{Y |F (Y ) = Y } ⊆
⋂

D =
⋂
{Y |F (Y ) ⊆ Y }

as desired. This proves claim 1 of the theorem.



Fixed Point Operators
We then prove the claim 2 of the theorem, i.e., the claim that if S if finite,
the least fixed point of F is the set

X∞ =
⋃
n≥ 0

Xn.

To see that X∞ is a fixed point, let us first show that that the sequence
X 0,X 1,X 2... is weakly increasing due to the monotonicity of F . Indeed,
we have X 0 = ∅ ⊆ X 1, and if Xn ⊆ Xn+1, then, by the monotonicity of F ,
we have

Xn+1 = F (Xn) ⊆ F (Xn+1) = Xn+2.

Therefore, as the set S is finite, the sequence must increase up to some
index n such that Xn = Xn+1, whence

X∞ = Xn = Xn+1

is indeed a fixed point. Let us then show X∞ is the least fixed point.



Fixed Point Operators

Now, to show that X∞ is indeed the least fixed point, suppose that we
have F (Y ) = Y . It now suffices to show that Xn ⊆ Y for all n ∈ N. To
this end, we argue by induction on n.

Now, we have X 0 = ∅ ⊆ Y , so the base case is clear. Suppose then that
Xn ⊆ Y . Thus, by the monotonicity of F , we have

Xn+1 = F (Xn) ⊆ F (Y ) = Y ,

whence Xn+1 ⊆ Y , as required.



Fixed Point Logic

Fixed points can be used to define logics that approximate the finite vari-
able logic FVL. This leads to logics that are not infinitary like FVL, but
nevertheless can express a variety of interesting and relevant properties—
such as c1-c2-connectedness—that are not expressible in FO. Here we next
define the most prominent of the range of related logics, namely the least
fixed point logic LFP. The logic is somewhat difficult to understand and
involves many issues that need to be taken into account when introducing
the system. We begin with some auxiliary definitions.



Fixed Point Logic

Let ϕ be a formula and P a relation symbol (or a relation variable) of any
arity. We say that P occurs positively in ϕ if P is in the scope of an
even number of negations.2 For example P occurs positively in the formula
∃x(¬Qx ∧ ¬(Rxy ∨ ¬Px)), being in the scope of two negations, and P
occurs negatively in the formula ∃x¬(¬Qx ∧ ¬(Rxy ∨ ¬Px)), being in the
scope of three negations.

Of course P can also occur both positively and negatively in a formula.

2Being in the scope of a negation means P is somewhere below that negation in the
syntax tree (or parse tree) of the formula.



Fixed Point Logic

Let τ be a vocabulary and A a τ -model. Let S be an n-ary relation symbol
such that S 6∈ τ . Let S ′ ⊆ An be an n-ary relation over A. We let A[S 7→ S ′]
denote the (τ ∪ {S})-model that is otherwise as A but interprets the extra
symbol S as the relation S ′. That is, A[S 7→ S ′] is the expansion of A to
the vocabulary τ ∪ {S} interpreting S as S ′.

Let f : V → A be an assignment, and let a1, . . . , an ∈ A. We let
f [(x1, . . . , xn) 7→ (a1, . . . , an)] denote the assignment with the domain
V ∪ {x1, . . . , xn} and such that

I f [(x1, . . . , xn) 7→ (a1, . . . , an)](y) = f (y) when y 6∈ {x1, . . . , xn}.
I f [(x1, . . . , xn) 7→ (a1, . . . , an)](xi) = ai for all xi ∈ {x1, . . . , xn}.

In other words, f [(x1, . . . , xn) 7→ (a1, . . . , an)] is otherwise as f but maps
each xi to ai .



Fixed Point Logic
Recall that a formula ϕ(x , y) gives rise to the binary relation ϕA ⊆ A× A
in a model A, the relation ϕA containing exactly those pairs (a, b) ∈ A×A
such that A, f [(x , y) 7→ (a, b)] |= ϕ. This leads to the following idea.

Let A be a finite τ -model with τ = {R} containing one binary relation
symbol R. Let ϕ be the formula R(x , y) ∨ ∃z(R(x , z) ∧ X (z , y)), where
X is a binary relation symbol (or alternatively a binary relation variable)
that does not occur in τ . Now, consider the relation ϕA[X 7→∅], that is, the
relation defined by ϕ when A is expanded by the new relation symbol X
interpreted as the empty binary relation ∅. Clearly ϕA[X 7→∅] = RA. Call
Y 0 = ∅ and Y 1 = ϕA[X 7→Y 0] = RA, and now consider ϕA[X 7→Y 1]. This is
the relation RA ∪ (RA ◦ RA). Call this relation Y 2 and consider ϕA[X 7→Y 2].
This is the relation RA∪ (RA ◦Y 2). It is easy to see that continuing in this
fashion, we ultimately obtain a fixed point and it is the transitive closure of
RA. Thereby, intuitively, we were able to obtain the transitive closure of a
binary relation by ’repeatedly inputting the output relation of the formula
ϕ to the formula itself’.



Fixed Point Logic
Inspired by this example, let us put forward a related general definition that
considers formulae ϕ as operators over An.

Let τ be a vocabulary. Let S 6∈ τ be an n-ary relation symbol, and let ϕ be
a formula of the vocabulary {S} ∪ τ . Let A be a τ -model and f : V → A
a related assignment. The formula ϕ gives rise to an operator

F(A,f ,ϕ,S,(x1,...,xn)) : P(An)→ P(An)

defined such that

F(A,f ,ϕ,S,(x1,...,xn))(X )
= { (a1, . . . , an) ∈ An |A[S 7→ X ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= ϕ}.

So informally, the output is the collection of tuples (a1, . . . , an) such that
ϕ(a1, . . . , an) holds when S (which occurs in ϕ) is interpreted as the input
X .



Fixed Point Logic

Let τ be a vocabulary. The set of τ -formulae of least fixed point logic
LFP is obtained by extending the formula construction rules of first-order
logic by the following rule:

Suppose S is an n-ary relation symbol that does not occur in τ and ϕ is
a (τ ∪ {S})-formula of LFP where all occurrences of S are positive. Let
t1, . . . , tn be τ -terms. Then

[lfp((x1,...,xn),S) ϕ](t1, . . . , tn)

is a τ -formula of LFP.



Fixed Point Logic
The semantics of LFP is defined by extending the rules of first-order logic
such that

A, f |= [lfp(S,(x1,...,xn)) ϕ](t1, . . . , tn)

holds if and only if (tA,f1 , . . . , tA,fn ) belongs to the least fixed point of the
operator F(A,f ,ϕ,S,(x1,...,xn)).

Note that therefore you should think about [lfp(S,(x1,...,xn)) ϕ] as an n-ary
relation obtained by iterating the formula ϕ up to a fixed point. The formula
[lfp(S,(x1,...,xn)) ϕ](t1, . . . , tn) then is a relational statement stating that the
tuple corresponding to (t1, . . . , tn) is in the relation [lfp(S,(x1,...,xn)) ϕ]. Thus
the formula [lfp(S,(x1,...,xn)) ϕ](t1, . . . , tn) is almost like an atomic formula,
but now the relation symbol (that an atomic formula would have) has been
replaced by [lfp(S,(x1,...,xn)) ϕ].

Examples of LFP-formulae are given below after we have discussed the
proof of Theorem 5.7 below.



Fixed Point Logic

Theorem 5.7
Let ϕ be a formula of LFP such that the occurrences of the relation symbol
S are positive. Let A be a finite model and f a related assignment. Then the
operator F(A,f ,ϕ,S,(x1,...,xn)) is monotone and thereby (due to the Knaster-
Tarski Theorem) has a least fixed point.

We omit the full proof of the theorem. However, we sketch the proof for
the special case where formulae have no nested fixed points. Formulae
without nested fixed points are such that ϕ in any fixed point subformula
[lfp(S,(x1,...,xn))ϕ](t1, . . . , tn) is not allowed to contain a subformula of type
[lfp(T ,(y1,...,ym))ψ](s1, . . . , sm). Before the proof, we give some auxiliary def-
initions.



Fixed Point Logic

Definition 5.8
Let U be a set. We say that an operation F : P(U)→ P(U) is antimono-
tone if X ⊆ Y implies that F (Y ) ⊆ F (X ).

Definition 5.9
An operator G : P(U) → P(U) is called the complement operator of
F : P(U)→ P(U) if G(X ) = U \ F (X ) for all X ∈ P(U).

Clearly the complement operator of a monotone operator is antimonotone.

Note, above G is the complement operator of F . The general complement
operator is the operator CU : P(U) → P(U) such that CU(X ) = U \ X
for every input X ∈ P(U).



Fixed Point Logic

Consider an operator F(A,f ,ϕ,S,(x1,...,xn)) which maps from P(An) to P(An).
Recall that this operator is defined such that

F(A,f ,ϕ,S,(x1,...,xn))(X )
= { (a1, . . . , an) ∈ An |A[S 7→ X ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= ϕ}.

It is easy to see that F(A,f ,¬ϕ,S,(x1,...,xn)) is the complement operator of the
operator F(A,f ,ϕ,S,(x1,...,xn)).



Fixed Point Logic

Proof Sketch. Here sketch the proof of Theorem 5.7 for the case where
there are no nested fixed points. The argument is somewhat lengthy, tedious
and not too central to our discourse, so the reader can safely skip over the
proof sketch.



Fixed Point Logic

Now, recall the restriction in the syntax of LFP that in all formulae of type
[lfp(S,(x1,...,xn))ϕ](t1, . . . , tn), all occurrences of S in ϕ must be positive in
ϕ. Therefore it is easy to see that for every subformula ψ of ϕ, we have
that
1. all occurrences of S are positive in ψ

or
2. all occurrences of S are negative in ψ.

We shall prove by induction on the structure of ϕ that for all subformulae
ψ of ϕ,
I if all occurrences of S in ψ are positive, then F(A,f ,ψ,S,(x1,...,xn)) is

monotone, and
I if all occurrences of S in ψ are negative then F(A,f ,ψ,S,(x1,...,xn)) is

antimonotone.



Fixed Point Logic

If ψ is an atom R(t1, . . . , tm) or t1 = t2, it is clear that

F(A,f ,ψ,S,(x1,...,xn))(X )
= { (a1, . . . , an) ∈ An |A[S 7→ X ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= ψ}

defines a constant operator that always outputs the same relation, indepen-
dently of the input relation X . And constant operators are obviously both
monotone and antimonotone.

If ψ is an atom S(t1, . . . , tn), then clearly

F(A,f ,ψ,S,(x1,...,xn))(X )
= { (a1, . . . , an) ∈ An |A[S 7→ X ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= ψ}

defines a monotone operator.



Fixed Point Logic

Now assume ψ is ¬χ. By the induction hypothesis,

F(A,f ,χ,S,(x1,...,xn))(X )
= { (a1, . . . , an) ∈ An |A[S 7→ X ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= χ}

is monotone if all occurrences of S are positive in χ, and antimonotone if
negative. Now, if F(A,f ,χ,S,(x1,...,xn)) is monotone, then clearly

F(A,f ,¬χ,S,(x1,...,xn))(X )
= { (a1, . . . , an) ∈ An |A[S 7→ X ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= ¬χ}

is the complement operation of F(A,f ,χ,S,(x1,...,xn)) and thereby antimono-
tone, as required. Similarly, if F(A,f ,χ,S,(x1,...,xn)) is antimonotone, then
F(A,f ,¬χ,S,(x1,...,xn)) is monotone, as required.



Fixed Point Logic

Consider then the case where ψ = ψ1 ∧ ψ2. We have two cases:

1. The occurrences of S in ψ are all positive, and thus this holds also
for ψ1 and ψ2. Therefore F(A,f ,ψ1,S,(x1,...,xn)) and F(A,f ,ψ2,S,(x1,...,xn)) are
both monotone by the induction hypothesis.

2. The occurrences of S in ψ are all negative, and thus F(A,f ,ψ1,S,(x1,...,xn))
and F(A,f ,ψ2,S,(x1,...,xn)) are both antimonotone by the induction hypoth-
esis.

We first consider case 1.



Fixed Point Logic
Suppose X ⊆ Y . We must show that

F(A,f ,ψ1∧ψ2,S,(x1,...,xn))(X ) ⊆ F(A,f ,ψ1∧ψ2,S,(x1,...,xn))(Y ),

i.e., that

{ (a1, . . . , an) ∈ An |A[S 7→ X ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= ψ1 ∧ ψ2}
⊆ {(a1, . . . , an) ∈ An|A[S 7→ Y ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= ψ1 ∧ ψ2}.

This amounts to showing that

{ (a1, . . . , an) ∈ An |A[S 7→ X ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= ψ1}
∩ { (a1, . . . , an) ∈ An |A[S 7→ X ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= ψ2}
⊆
{ (a1, . . . , an) ∈ An |A[S 7→ Y ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= ψ1}
∩ { (a1, . . . , an) ∈ An |A[S 7→ Y ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= ψ2}.

In other words, we must show that ...



Fixed Point Logics

F(A,f ,ψ1,S,(x1,...,xn))(X ) ∩ F(A,f ,ψ2,S,(x1,...,xn))(X )
⊆
F(A,f ,ψ1,S,(x1,...,xn))(Y ) ∩ F(A,f ,ψ2,S,(x1,...,xn))(Y ).

By the induction hypothesis, the assumption X ⊆ Y implies that we have

1. F(A,f ,ψ1,S,(x1,...,xn))(X ) ⊆ F(A,f ,ψ1,S,(x1,...,xn))(Y ) and
2. F(A,f ,ψ2,S,(x1,...,xn))(X ) ⊆ F(A,f ,ψ2,S,(x1,...,xn))(Y ),

and thus the case where both F(A,f ,ψ1,S,(x1,...,xn)) and F(A,f ,ψ2,S,(x1,...,xn)) are
monotone is clear. The case where both of these operators are antimono-
tone is symmetric.
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Now let ψ = ∃xχ. Suppose that the occurrences of S in χ are all positive,
so F(A,f ,χ,S,(x1,...,xn)) is monotone by the induction hypothesis. We assume
x 6∈ {x1, . . . , xn} (the assumption is fine as we can always rename the
occurrences of x in χ if necessary). We must show that...



Fixed Point Logic

F(A,f ,∃xχ,S,(x1,...,xn))(X ) ⊆ F(A,f ,∃xχ,S,(x1,...,xn))(Y ), i.e., that

{ (a1, . . . , an) ∈ An |A[S 7→ X ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= ∃xχ}
⊆ {(a1, . . . , an) ∈ An|A[S 7→ Y ], f [(x1, . . . , xn) 7→ (a1, . . . , an)] |= ∃xχ}.

We have
(a1, . . . , an) ∈ F(A,f ,∃xχ,S,(x1,...,xn))(X )
⇒

(a1, . . . , an) ∈ F(A,f [x 7→a],χ,S,(x1,...,xn))(X ) for some a ∈ A
ind .hypot.⇒

(a1, . . . , an) ∈ F(A,f [x 7→a],χ,S,(x1,...,xn))(Y ) for some a ∈ A
⇒

(a1, . . . , an) ∈ F(A,f ,∃xχ,S,(x1,...,xn))(Y ),

as required. The case for antimonotone (A,f ,χ,S,(x1,...,xn)) is symmetric.



Fixed Point Logic

Write a formula of LFP that defines the property of c1-c2-connectedness
over the class of finite {R, c1, c2}-models.



Fixed Point Logic

c1 = c2 ∨ [lfp(S,(x ,y))Rxy ∨ ∃z(Rxz ∧ Szy)](c1, c2)



Fixed Point Logic

From the example above, we see that LFP indeed relates quite closely to
FVL. We shall return to this issue later on below.



Fixed Point Logic

Consider the following game that is played on finite structures (V ,R, c)
where R is a binary relation and c a constant. The game has two players,
I and II. At the first round, player I chooses some v1 such that (c, v1) ∈ R
and player II responds by choosing some u1 such that (v1, u1) ∈ R. At
every subsequent round i + 1, the player I chooses a node vi+1 such that
(ui , vi+1) ∈ R and player II responds by choosing some ui+1 such that
(vi+1, ui+1) ∈ R. The player who cannot make a legal move loses the game,
and then the other player wins. If the game continues forever, neither of
the players wins the game.

Consider the formula ϕ(x) = ∀y(Rxy → ∃z(Ryz ∧ S(z)). Describe the set
A ⊆ V of elements a such that

(V ,R, c), f [y 7→ a] |= [lfp(S,x)ϕ(x)](y).



FIxed Point Logic

The set A is the set of nodes from where player II has a winning strategy
in the game if the player I has the turn to make a move. Thus we have
(V ,R, c) |= [lfp(S,x)ϕ(x)](c) if the player II has a winning strategy in the
game.



Fixed Point Logic

The requirement that the occurrences of S in formulae

[lfp(S,(x1,...,xn))ϕ](t1, . . . , tn)

are positive makes the related operators F(A,f ,ϕ,S,(x1,...,xn)) monotone and
thereby results in the existence of fixed points by Theorem 5.7. However,
the requirement of positive occurrences can be considered a theoretical
weakness and nuisance. Thus there exist further fixed point logics in finite
model theory we shall discuss next. The logics are very similar to LFP
but avoid the requirement of positive occurrences. We begin with some
auxiliary definitions.



Fixed Point Logic

Definition 5.10
Let F : P(U) → P(U) be an operator. The operator is inflationary if we
have X ⊆ F (X ) for all X ∈ P(U).

If U is a finite set and F : P(U) → P(U) inflationary, then clearly the
sequence X 0,X1,X 2... (where X 0 = ∅ and F n+1(X ) = F (F n(X ))) is in-
ductive and thus F reaches a fixed point such that Xn = Xn+1.

Definition 5.11
Let F : P(U) → P(U) be an operator. We let Finfl : P(U) → P(U)
denote the corresponding inflationary operator defined such that Finfl(X ) =
X ∪ F (X ) for all X ∈ P(U).



Fixed Point Logic

Definition 5.12
Let F : P(U)→ P(U) be an operator on a finite set U. Let X 0,X 1,X 2 be
the inductive sequence defined by the operator Finfl . As pointed out above,
since U if finite, the sequence reaches a fixed point, i.e., Xn = Xn+1 for
some n. That set Xn is called the inflationary fixed point of F . We let
ifp(F ) denote the inflationary fixed point of F .
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Definition 5.13
Let F : P(U)→ P(U) be an operator on a finite set U. Let X 0,X 1,X 2, . . .
be the corresponding sequence with X 0 = ∅ and F n+1(X ) = F (F (Xn)).
The partial fixed point of F is the set Y ∈ P(U) defined as follows.
I Suppose there exists an n such that Xn = Xn+1. Then the partial

fixed point of F is the set Xn.
I If no such n exists, the partial fixed point of F is ∅.

We denote the partial fixed point of F by pfp(F ).
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Let τ be a vocabulary. The set of τ -formulae of inflationary fixed point
logic IFP is defined by extending the formula construction rules of first-
order logic by the following rule.

Suppose S is an n-ary relation symbol that does not occur in τ and ϕ is a
(τ ∪ {S})-formula of IFP. Let t1, . . . , tn be τ -terms. Then

[ifp((x1,...,xn),S) ϕ](t1, . . . , tn)

is a τ -formula of IFP.

Notice that we do not require that the occurrences of S should be positive
in ϕ.
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The semantics of inflationary fixed point logic IFP is defined by extending
the rules of first-order logic such that

A, f |= [lfp(S,(x1,...,xn)) ϕ](t1, . . . , tn)

holds if and only if (tA,f1 , . . . , tA,fn ) belongs to the inflationary fixed point
of the operator F(A,f ,ϕ,S,(x1,...,xn)).
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Let τ be a vocabulary. The set of τ -formulae of partial fixed point logic
PFP is defined by extending the formula construction rules of first-order
logic by the following rule.

Suppose S is an n-ary relation symbol that does not occur in τ and ϕ is a
(τ ∪ {S})-formula of PFP. Let t1, . . . , tn be τ -terms. Then

[pfp((x1,...,xn),S) ϕ](t1, . . . , tn)

is a τ -formula of PFP.

Notice that like in the case of IFP, we do not require that the occurrences
of S should be positive in ϕ.



Fixed Point Logic

The semantics of partial fixed point logic PFP is defined by extending the
rules of first-order logic such that

A, f |= [pfp(S,(x1,...,xn)) ϕ](t1, . . . , tn)

holds if and only if (tA,f1 , . . . , tA,fn ) belongs to the partial fixed point of the
operator F(A,f ,ϕ,S,(x1,...,xn)).



Fixed Point Logic
The formula [lfp(S,(x ,y)) Rxy ∨ ∃z(Rxz ∧ Szy)](x , y) defines the transitive
closure of the relation R.
1. ϕ0(x , y) be the formula ¬x = x ∧ ¬y = y (which is never satisfied

and thus defines the empty binary relation over any model).
2. Suppose we have defined ϕn(x , y). We would like to define ϕn+1(x , y)

to be the formula obtained from Rxy ∨ ∃z(Rxz ∧ Szy) by replacing the
atom Szy by the formula ϕn(z , y).This almost works, but now ϕ1(z , y)
would become Rzy ∨ ∃z(Rzz ∧ ϕ0(z , y)). Thus we define ϕn+1(x , y)
to be the formula Rxy ∨ ∃z(Rxz ∧ ∃x(x = z∧ϕn(x , y))), which fixes
the variable capture problem. So, to summarize, ϕn+1(x , y) is obtained
by replacing Sxy in Rxy ∨ ∃z(Rxz ∧ ∃x(x = z ∧ Sxy)) by ϕn(x , y).

It is easy to see that the infinitary formula∨
n∈N

ϕn

of the finite variable logic FVL is equivalent to the LFP-formula
[lfp(S,(x ,y)) Rxy ∨ ∃z(Rxz ∧ Szy)](x , y).



Fixed Point Logic

It is not difficult to see how to extend this scheme so that every formula of
LFP translates into FVL, but we omit the full proof here.

Theorem 5.14
Every formula of LFP translates to an equivalent formula of FVL.

Thereby we can use tools of FVL (namely, the pebble game PG′) to prove
undefinability results that concern the least fixed point logic.


	

