
Finite model theory
3. Logics

1 of 59

Games: general issues

In this part of the course we define a collection of different logics and study
their properties is some detail. For example, we relate the logics to different
kinds of the games for proving undefinability results, thereby characterizing
the expressive powers of the logics. This leads to an understanding of what
can and cannot be expressed in different formalisms. Such questions are
important foremost for their own sake, but they can also be of use in, e.g.,
database theory—a field where the expressivity of different query languages
is of utmost importance.

2 of 59

First-order logic

We let VAR = { vi | i ∈ Z+ } a countably infinite set of variable symbols,
or first-order variable symbols. We commonly use symbols x , y , z , u, v
to denote variables in VAR. Thereby x , y , z , u, v are sometimes called
metavariables. We often also use x1, x2, . . . as metavariables.

3 of 59

First-order logic

Let τ be a vocabulary. Let F and C be, respectively, the sets of function
symbols and constant symbols in τ . The set T of τ -terms is the smallest
set such that

1. VAR ⊆ T ,
2. C ⊆ T ,
3. If t1, . . . , tn ∈ T and f ∈ F is an n-ary function symbol, then

f (t1, . . . , tn) ∈ T .

4 of 59

First-order logic

If R ∈ τ is an n-ary relation symbol and t1, . . . , tn are τ -terms, then
R(t1, . . . , tn) is a τ -atom. Also t1 = t2 is called a τ -atom, and t1 = t2 is
also called an equality atom or identity atom. (We note that the equality
symbol ‘=’ is not considered to belong to any vocabulary.)

5 of 59

First-Order Logic

The set of τ -formulae of first-order logic FO is the smallest set T such
that the following conditions hold.

1. Every τ -atom is in T .
2. If ϕ ∈ T , then ¬ϕ ∈ T .
3. if ϕ,ψ ∈ T , then (ϕ ∧ ψ) ∈ T .
4. If ϕ ∈ T and x ∈ VAR, then ∃xϕ ∈ T .

We use the familiar abbreviations ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), ∀xϕ = ¬∃x¬ϕ,
ϕ→ ψ = ¬ϕ ∨ ψ and ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ).

We use the convention that ¬ always binds stronger than ∧,∨ →,↔, so,
e.g., ¬ϕ ∧ ψ stands for “(¬ϕ) ∧ ψ”.

6 of 59

First-Order Logic

Definition 3.1
Let X ⊆ VAR be a set of variables and A a model. An assignment over
A is a function f : X → A. We also call f a variable assignment over A.

Intuitively, the variable assignment f gives interpretations to the variables
in X as elements of the domain A of A.

Let x be a variable and f : X → A a variable assignment over A. Let a ∈ A
be an element. Then f [x 7→ a] is the variable g with domain X ∪ {x} such
that for all variables y ∈ X ∪ {x},
I g(y) = f (y) if y 6= x ,
I g(y) = a if y = x .

Thus f [x 7→ a] is the assignment that is otherwise as f but maps x to a.
Note that x may or may not belong to the domain X of f .

7 of 59

First-Order Logic

Let t be a τ -term and A a τ -model and f : X → A a variable assignment.
Then tA,f denotes the element of A defined as follows.

I If t is a constant symbol c, then tA,f = cA.
I If t is a variable symbol x ∈ X , then tA,f = f (x).
I If t is a term of type g(t1, . . . , tn) where g ∈ τ and where t1, . . . , tn

are τ -terms, then tA,f = gA(tA,f
1 , . . . , tA,f

n).

8 of 59

First-Order Logic

The set of variables var(t) of a τ -term t is defined as follows.
1. if t is x ∈ VAR, then var(t) = {x}.
2. If t is a c is a constant symbol c, then var(t) = ∅.
3. If t is a term f (t1, . . . , tn) for some terms t1, . . . , tn, then

var(t) = var(t1) ∪ · · · ∪ var(tn).

The set of free variables free(ϕ) of a first-order formula ϕ is defined as
follows.

1. free(R(t1, . . . , tn)) = var(t1) ∪ · · · ∪ var(tn).
2. free(t1 = t2) = var(t1) ∪ var(t2).
3. free(¬ϕ) = free(ϕ).
4. free(ϕ ∧ ψ) = free(ϕ) ∪ free(ψ).
5. free(∃xϕ) = free(ϕ) \ {x}.

9 of 59

First-Order Logic

Definition 3.2
A first-order formula ϕ is a sentence if free(ϕ) = ∅. The formula ϕ is an
open formula if free(ϕ) 6= ∅.

10 of 59

First-Order Logic
Let A be a τ -model, and let t1, . . . , tn be τ -terms. The semantics of first-
order logic FO is as follows.

A, f |= R(t1, . . . , tn) ⇔ (tA,f
1 , . . . , tA,f

n) ∈ RA

A, f |= t1 = tn ⇔ tA,f
1 = tA,f

2
A, f |= ¬ϕ ⇔ not A, f |= ϕ
A, f |= ϕ ∧ ψ ⇔ A, f |= ϕ and A, f |= ϕ
A, f |= ∃x ϕ ⇔ there exists a ∈ A such that A, f [x 7→ a] |= ϕ

Note, sometimes we write A |=f ϕ instead of A, f |= ϕ. When f = ∅ is the
empty assignment, we may write A |= ϕ. Therefore, if ϕ is a sentence, we
may write A |= ϕ to indicate that ϕ is satisfied in A. We also often write
(A, f) |= ϕ instead of A, f |= ϕ and call (A, f) a formula interpretation
or simply an interpretation. If (A, f) |= ϕ, we say that (A, f) satisfies ϕ,
or that A satisfies ϕ under f .

11 of 59

First-Order Logic

Example 3.3
The sentence

∀x∃yR(x , y) ∧ ∀x∀y∀z
(

(R(x , y) ∧ R(x , z)) → y = z
)
.

states that the binary relation R is a function. We also say that the sentence
“defines the property” that R is a function.

Example 3.4
The open formula

∃y(R(x , y) ∧ P(y))

states that x links via R to a point in P. We could also say that x links
via R to a point that satisfies P.

12 of 59

First-Order Logic

It is often convenient to leave out brackets from formulae. For example,
atoms T (x , y , z , u), R(x , y), P(x) can often more conveniently be written
Txyzu, Rxy and Px . With this convention, the formula

∀x∃yR(x , y) ∧ ∀x∀y∀z
(

(R(x , y) ∧ R(x , z)) → y = z
)

from the previous slide becomes

∀x∃y Rxy ∧ ∀x∀y∀z
(

(Rxy ∧ Rxz) → y = z
)
.

13 of 59

First-Order Logic

Let ϕ be a formula. We may refer to ϕ by writing ϕ(x , y , . . . , v) when the
free variables of ϕ are precisely x , y , . . . , v . (Note, often in the literature,
this notation is relaxed, and ϕ(x , y , . . . , v) may denote a formula where the
set of free variables is a subset of {x , y , . . . , v}.)

Each τ -formula ϕ = ϕ(x , y , . . . , v) gives rise to a relation ϕA in a τ -model
A in the following natural way. Let vi1 , . . . , vin ∈ VAR be the variables
in ϕ(x , y , . . . , v) (i.e., we have {vi1 , . . . , vin} = {x , y , . . . , v}) such that
i1 < · · · < in.

ϕA = {(a1, . . . , an) ∈ An | A, {(vi1 , a1), . . . , (vin , an)} |= ϕ}.

Here {(vi1 , a1), . . . , (vin , an)} is the assignment function mapping vij to aj .

14 of 59

First-Order Logic

Example 3.5
Consider the model M = (M,R) below with a binary relation R. Suppose
x and y denote the variables vi1 and vi2 with i1 < i2.

Let ϕ(x , y) be the formula (Rxy ∨ Ryx) ∧ x 6= y , and let ψ(x) be the
formula ∃y (Ryx ∧ y 6= x). Then ϕM is the binary relation {(b, c), (c, b)}
and ψM the unary relation {b}.

15 of 59

First-Order Logic

Consider further the model M above. Write down a first-order formula
ϕ(v1, v2) so that (M, ϕM) is the model below. Continues...

16 of 59

First-Order Logic

One possible first-order formula ϕM defining the below relation in the
above model M is (Rxx ∧ Ryy ∧ x 6= y) ∨ (x = y ∧ ¬Rxy).

17 of 59

First-Order Logic

Definition 3.6
The quantifier rank qr(ϕ) of a first-order formula ϕ is defined as follows.

1. Atoms have quantifier-rank zero: qr(R(t1, . . . , tn)) = 0 and
qr(t1 = t2) = 0.

2. qr(¬ϕ) = qr(ϕ).
3. qr(ϕ ∧ ψ) = max(qr(ϕ), qr(ψ)).
4. qr(∃xϕ) = qr(ϕ) + 1.

Therefore, the quantifier-rank of the formula is simply the maximum number
of nested quantifiers in the same formula. Therefore it can also be called
the quantifier nesting depth.

18 of 59

First-Order Logic

Example 3.7
The formula

∃y(Rxy ∧ ∃x(Ryx ∧ ∃y(Rxy ∧ Py))) ∧ ∀x∃yRxy

has quantifier-rank 3. Intuitively, the formula states that there is a walk of
three edges from x to a point satisfying P, and every point z in the model
links to some point u.

The formula ∀x∃y∀z∃u (Sxyzu ∧ Pu) ∧ ∃xPx has quantifier-rank 4.

19 of 59

First-Order Logic

Let τ be a vocabulary. Let ϕ and ψ be τ -formulae. We call ϕ and ψ
equivalent, denoted ϕ ≡ ψ, if for all τ -models A andB and all assignments
f : X → A and g : X → B with free(ϕ), free(ψ) ⊆ X , we have

(A, f) |= ϕ⇔ (B, g) |= ψ.

20 of 59

First-Order Logic
Let F be a set of formulae. The set of Boolean combinations of formulae
in F is the smallest set T defined as follows.
I If ϕ ∈ F , then ϕ ∈ T .
I If ϕ ∈ T , then ¬ϕ ∈ T .
I If ϕ,ψ ∈ T , then ϕ ∧ ψ ∈ T .

Consider a finite set F = {ϕ1, . . . , ϕn}. A full description with respect to
F is a conjunction χ1 ∧ · · · ∧ χn where for each i ≤ n, we have χi = ϕi
or χi = ¬ϕi . For example Px ∧ ¬Rxy is a full description with respect to
{Px ,Rxy}. It is easy to see that if F ′ is a finite set of formulae, then every
Boolean combination of formulae in F ′ is equivalent to some disjunction
of full descriptions with respect to F ′. Therefore, up to equivalence, there
exist only finitely many Boolean combinations of formulae in F ′, or more
formally, there exists a finite set BF ′ of Boolean combinations of formulae
α ∈ F ′ such that for each Boolean combination χ of formulae α′ ∈ F ′, we
have χ ≡ χ′ for some χ′ ∈ BF ′ .

21 of 59

First-Order Types

We shall next develop a definition of types. Informally, a rank-k first-
order type of an interpretation (M, f) is a first-order formula that states
about (M, f) everything that can be stated with formulae or rank up to k.
Therefore, the type could be described as the rank-k theory of (M, f), as
the type gives a kind of a complete description of the tuple (f (x))x∈dom(f)
of elements of M in terms of formulae with rank up to k. We shall give
the formal definitions below after proving a preliminary result.

22 of 59

First-Order Types

Theorem 3.8
Let τ be a finite, relational vocabulary. Up to equivalence, there are only
finitely many τ -formulae of quantifier rank k and with the free variables in
{x1, . . . , xn}. More formally, there exists a finite set Fk(x1, . . . , xn) of first-
order τ -formulae with the free variables in X = {x1, . . . , xn} and with quan-
tifier rank k such that for any first-order formula ϕ of quantifier rank k and
with the free variables in X, we have ϕ ≡ β for some β ∈ Fk(x1, . . . , xn).
Proof. Let {x1, . . . , xr} be an arbitrary, finite set of variables. Since τ is
finite, it is clear that there are only finitely many τ -atoms whose variables are
in {x1, . . . , xr} and constant symbols in τ . Let Atom be this set of atoms.
Now, since Atom is finite, it is clear that up to equivalence, there are only
finitely many Boolean combinations of atoms α ∈ Atom. More formally,
there exists a finite set F of Boolean combinations of atoms α ∈ Atom such
that for any Boolean combination β of atoms α′ ∈ Atom, we have β ≡ χ
for some χ ∈ F . Continues...

23 of 59

First-Order Types
We have thus shown that up to equivalence, there are only finitely many
τ -formulae of quantifier rank 0 with the free variables in {x1, . . . , xr}.

Arguing inductively, let {x1, . . . , xm} be an arbitrary set of variables. Now,
it is clear that every τ -formula of quantifier rank k + 1 and with the free
variables in {x1, . . . , xm} is a Boolean combination of formulae ∃xψ where
ψ is a Boolean combination of τ -formulae of rank up to k and with the free
variables in {x1, . . . , xm} ∪ {x}.

By the induction hypothesis, up to equivalence, there are only finitely many
τ -formulae of rank up to k and with the free variables in {x1, . . . , xm}∪{x}.
Therefore, up to equivalence, there exist only finitely many τ -formulae ∃x ψ
of rank up to k + 1 and with the free variables in {x1, . . . , xm}.1 Thus it is
easy to see that up to equivalence, there are only finitely many τ -formulae
of rank k + 1 and with the free variables in {x1, . . . , xm}.

1Note that any formula ∃y α with x 6∈ free(∃yα) can be modified to an equivalent
formula ∃x α′ simply by renaming the occurrences of the bound variable y . 24 of 59

First-Order Types
Let A be a τ -model for a finite, relational vocabulary τ . Let (A, f) be an
interpretation, f : {x1, . . . , xn} → A. The rank-k type (or rank-k theory)
of (A, f) in the free variables {x1, . . . , xn} is the set

{ψ(y1, . . . , ym) | {y1, . . . , ym} ⊆ {x1, . . . , xn}, (A, f) |= ψ,

and ψ is a τ -formula of quantifier rank at most k }.

Note that such a rank-k theory is infinite, but by Theorem ??, it contains,
up to equivalence, only finitely many formulae. Thus we may replace the
theory by a finite conjunction over a finite set of non-equivalent formulae in
the theory, taking one formula from every set of equivalent formulae. Such
a finite conjunction is called a rank-k characteristic formula of (A, f).
There are many ways to choose the formulae from the rank-k theory, but we
henceforth pick just one way of choosing them, and thus we can refer to the
rank-k characteristic formula of (A, f) (rather than a rank-k characteristic
formula of (A, f)). We denote this formula by Ψk〈A, f 〉.

25 of 59

First-Order Types

Theorem 3.9
Let A and B be τ -formulae for the same finite, relational vocabulary τ .
Let f and g be assignments for A and B, respectively, and assume that f
and g have the same finite domain. If (B, g) |= Ψk〈A, f 〉, then we have
(A, f) |= ψ ⇔ (B, g) |= ψ for every τ -formula ψ of rank up to k and with
the free variables in dom(f) = dom(g).

Proof. Recall that the definition of a rank-k type dictates that the type
contains all formulae up to rank k and in the related free variables. A
characteristic formula is, by definition, just a finite encoding of the type
with a single conjunction.

26 of 59

Characterizing First-Order Logic

We now give a characterization of the expressive power of first-order logic.
Recall that we write A ∼=k B if the duplicator has a winning strategy in
EFk(A,B).

We also define the following piece of notation.

Definition 3.10
Let A and B be models of the same vocabulary. We write A ≡k B if A
and B satisfy exactly the same first-order sentences of quantifier-rank up
to k, i.e., for every first-order sentence ϕ of quantifier-rank at most k, we
have A |= ϕ⇔ B |= ϕ.

27 of 59

Characterizing First-Order Logic

Theorem 3.11
Let τ be a finite relational vocabulary, and let A and B be τ -models. Then
we have A ∼=k B iff A ≡k B.

We shall prove this theorem later on below. Before that, we give some
auxiliary technical definitions.

28 of 59

Characterizing First-Order Logic

Let {x1, . . . , xn} be the domain of assignments f and g mapping to A and B,
respectively. We write (A, f) ∼=k (B, g) to denote that the duplicator has
a winning strategy in the k-round (i.e., at most k moves for both players)
game starting from the stage

(A, (cA1 , . . . , cAr , f (x1), . . . , f (xn)),B, (cB1 , . . . , cBr , g(x1), . . . , g(xn)))

(and continuing up to k rounds after this starting stage). If you like, you can
think of f (x1), . . . , f (xn) as extra constant symbols in A, and analogously
for g(x1), . . . , g(xn). Then the game is the good old k-move game with
the expanded set of constant symbols.

We write (A, f) ≡k (B, g) to denote that (A, f) and (B, g) satisfy the
same formulae of rank up to k and free variables in dom(f) = dom(g).

29 of 59

Characterizing First-Order Logic

We then begin proving Theorem ?? by induction. To get the proof going,
the argument involves interpretations (M, h) rather than simply models M.
We shall prove that for models A and B of a finite, relational vocabulary
τ , for any finite set X of variables, and for all assignments f : X → A and
g : X → B, we have

(A, f) ∼=k (B, g)⇔ (A, f) ≡k (B, g).

The proof will proceed by induction on k. The proof involves a typical
phenomenon that the claim proved is stronger than the claim of the theorem
(indeed, we involve assignment functions f and g in the proof even though
the theorem statement does not refer to assignments). This strengthening
is done to get the induction argument to work properly. Unlike the theorem
statement, the induction involves open formulae, and therefore assignments
are useful. So, let us do the induction.

30 of 59

Characterizing First-Order Logic
The induction basis claim is that (A, f) ∼=0 (B, g) ⇔ (A, f) ≡0 (B, g)
holds for all f and g with the same finite domain. This is equivalent to—by
the involved definitions—the statement that the following conditions are
equivalent.2

1. {(cA1 , cB1), . . . , (cAr , cBr)} ∪ {
(
f (x1), g(x1)

)
, . . . ,

(
f (xn), g(xn)

)
} is a

partial isomorphism from A to B.
2. (A, f) and (B, g) satisfy the same quantifier-free τ -formulae, that is,

for every τ -formula ϕ of quantfier-rank 0, we have (A, f) |= ϕ iff
(B, g) |= ϕ.

To prove this, it clearly suffices to prove the following conditions equivalent.
a) {(cA1 , cB1), . . . , (cAr , cBr)} ∪ {

(
f (x1), g(x1)

)
, . . . ,

(
f (xn), g(xn)

)
} is a

partial isomorphism from A to B.
b) (A, f) and (B, g) satisfy the same τ -atoms, that is, for every τ -atom

ϕ, we have (A, f) |= ϕ iff (B, g) |= ϕ.
2Here—and henceforth—the notation (M, h) |= ϕ implicitly implies that the free

variables in ϕ are considered to be in the domain of h. Cases where this is not so are
ignored. 31 of 59

Characterizing First-Order Logic
The equivalence of a) and b) is clear by the definition of partial isomor-
phisms; to obtain bijectivity, note that equality atoms are also τ -atoms.
Thus (A, f) ∼=0 (B, g) ⇔ (A, f) ≡0 (B, g).

We then make the induction hypothesis that

(A, f) ∼=k (B, g) ⇔ (A, f) ≡k (B, g)

for all τ -models A and B and all assignments f and g mapping a finite set
X to A and B, respectively. We now should prove that

(A, f) ∼=k+1 (B, g) ⇔ (A, f) ≡k+1 (B, g)

for all assignments f and g mapping some finite set X of variables to A and
B, respectively. (Note here that both the induction hypothesis involving
rank k and the claim to be proved for rank k + 1 quantify over all suitable
related assignments f and g .)

32 of 59

Characterizing First-Order Logic
We will establish that the following conditions are equivalent.
1. (A, f) ∼=k+1 (B, g)
2. (A, f) and (B, g) satisfy the same τ -formulae ϕ of quantfier-rank at

most k + 1, i.e., we have (A, f) |= ϕ iff (B, g) |= ϕ for all τ -formulae
ϕ of quantifier rank at most k + 1.

Now, note that every rank-(k +1) formula is simply a Boolean combination
of formulae of type ∃xψ where ψ is of rank k. Therefore it is easy to see
that to prove the above claims 1 and 2 equivalent, it suffices to show the
following conditions equivalent.

a) (A, f) ∼=k+1 (B, g)
b) We have (A, f) |= ∃x ψ ⇔ (B, g) |= ∃x ψ for all τ -formulae ψ of

quantifier rank up to k.

33 of 59

Characterizing First-Order Logic
Assume that (A, f) ∼=k+1 (B, g) and let
I f = {(x1, a1), . . . , (xn, an)},
I g = {(x1, b1), . . . , (xn, bn)}.

Thus our assumption states that

(A, (a1, . . . , an)) ∼=k+1 (B, (b1, . . . , bn)),

where we leave the possible constant symbols c1, . . . , cr unwritten to sim-
plify notation—they are still there, just henceforth unwritten as they play
no explicit role in our argument.

Now assume that (A, f) |= ∃x ψ for some τ -formula ψ of quantifier rank
at most k. Therefore there exists some a ∈ A such that

A, f [x 7→ a] |= ψ.

Since (A, f) ∼=k+1 (B, g), if the spoiler chooses the element a, the dupli-
cator can respond by an element b ∈ B such that

(A, f [x 7→ a]) ∼=k (B, g [x 7→ b]).
34 of 59

Characterizing First-Order Logic
As (A, f [x 7→ a]) ∼=k (B, g [x 7→ b]), we conclude, by the induction hypoth-
esis, that

(A, f [x 7→ a]) |= χ ⇔ (B, g [x 7→ b]) |= χ

for all τ -formulae χ up to quantifier rank k. Therefore, as we have estab-
lished above that

A, f [x 7→ a] |= ψ,

we conclude that B, g [x 7→ b] |= ψ. Therefore B, g |= ∃x ψ. Thus we
have proved that A, f |= ∃x ψ ⇒ B, g |= ∃x ψ.

We prove that B, g |= ∃x ψ ⇒ A, f |= ∃x ψ similarly, and thus we
conclude that the condition b) holds, i.e., we have

(A, f) |= ∃x ψ ⇔ (B, g) |= ∃x ψ

for all τ -formulae ψ of quantifier rank up to k. This finishes the first
direction of the main proof.

35 of 59

Characterizing First-Order Logic
We then prove the direction from claim b) to claim a). Thus we assume
that

(A, f) |= ∃x ψ ⇔ (B, g) |= ∃x ψ
for all τ -formulae ψ of quantifier rank up to k. We should establish that

(A, f) ∼=k+1 (B, g).

Suppose that the spoiler chooses a ∈ A. By the definition of characteristic
formulae, we have

(A, f [x 7→ a]) |= Ψk〈A, f [x 7→ a]〉,

and therefore
(A, f) |= ∃xΨk〈A, f [x 7→ a]〉.

By the assumption that condition b) holds, we have

(B, g) |= ∃xΨk〈A, f [x 7→ a]〉.

Thus there exists some b ∈ B such that

(B, g [x 7→ b]) |= Ψk〈A, f [x 7→ a]〉.
36 of 59

Characterizing First-Order Logic

As (B, g [x 7→ b]) |= Ψk〈A, f [x 7→ a]〉, the interpretations (A, f [x 7→ a])
and (B, g [x 7→ b]) satisfy precisely the same formulae with the set

dom(f [x 7→ a]) = dom(g [x 7→ b])

of free variables and quantfier rank up to k. Therefore, by the induction
hypothesis, we have that (A, f [x 7→ a]) ∼=k (B, g [x 7→ b]). Therefore the
duplicator has a winning strategy in the rest of the game.

The case where the spoiler chooses from B is of course entirely symmetric.
Thus we have established that

(A, f) ∼=k+1 (B, g),

as desired.

37 of 59

Characterizing First-Order Logic
The Ehrenfeucht-Fraïssé game is used primarily for proving negative results
about first-order logic FO. The negative results concern limitations in the
expressive power of FO. We shall now discuss such results.

Definition 3.12
A property of models is a classM of models closed under isomorphism,
i.e., if M ∈ M and N ∼= M, then N ∈ M. For a vocabulary τ , we define
that a τ -property is a property containing only models of vocabularies σ
such that τ ⊆ σ.

Definition 3.13
A τ -propertyM of models is said to be definable (or expressible) in a logic
L if there exists a τ -sentence ϕ of the logic L such that for all σ-models
M with σ ⊇ τ , we have

M |= ϕ ⇔ M ∈M.

38 of 59

Characterizing First-Order Logic

Definition 3.14
Let N be a class of models. A τ -property M of models is said to be
definable (or expressible) with respect to N in a logic L if there exists a
τ -sentence ϕ of L such that for all σ-models M ∈ N with σ ⊇ τ , we have

M |= ϕ ⇔ M ∈M.

We also say thatM is definable over N or in relation to N whenM is
definable with respect to N .

39 of 59

Characterizing First-Order Logic

Example 3.15
The {R}-property that “R is transitive” is definable by the first-order sen-
tence

∀x∀y∀z
(
(Rxy ∧ Ryz) → Rxz).

Note here that the class of models corresponding to this property is the
classM of models interpreting at least the binary relation symbol R such
that R is indeed transitive.

The {S}-property that the ternary relation “S has no edges” is definable
by the FO-sentence

¬∃x∃y∃z Sxyz .

40 of 59

Characterizing First-Order Logic

Above we discussed definability of properties, and we identified properties
with classes of models. We can also talk about definability of classes of
models directly.

Definition 3.16
A class N of τ -models is definable in a logic L if there exists a τ -sentence
ϕ of L such that for all τ -models M, we have

M |= ϕ ⇔ M ∈ N .

Definition 3.17
A class N of τ -models is definable in a logic L with respect to a class N ′

of τ -models if there exists a τ -sentence ϕ of L such that for all models
M ∈ N ′, we have

M |= ϕ ⇔ M ∈ N .

41 of 59

Characterizing First-Order Logic

Theorem 3.18
LetM and N be classes of τ -models,M⊆ N . If a class C of τ -models is
not definable with respect toM in a logic L, then C is not definable with
respect to N in L.

Proof. Immediate.

42 of 59

Characterizing First-Order Logic

Let τ be the empty vocabulary. Let EVEN denote the class of τ -models
that have a domain with an even number of elements.

Theorem 3.19
The class EVEN is not definable with respect to the class of all finite
τ -models in the logic FO (where τ = ∅).

43 of 59

Characterizing First-Order Logic

Proof.
Let F denote the class of finite τ -models for τ = ∅. Suppose, for contradic-
tion, that EVEN is definable by a τ -sentence ϕ of first-order logic. Then
this formula ϕ must have some quantifier rank k. We shall prove that no
τ -formula of rank k defines EVEN. To do this, we shall repeatedly use
Theorem ??, i.e., the statement that

A ∼=k B iff A ≡k B

for any models A and B of the same finite relational vocabulary.

44 of 59

Characterizing First-Order Logic

The argument is simple. Fix some k > 0 (note that there exist no sentences
of quantfier rank 0 because the vocabulary is empty). Now let A be a model
of size 2k and B of size 2k+1. It is trivial that the duplicator has a winning
strategy in EFk(A,B). Thus, by Theorem ??, the models A and B must
agree on all first-order sentences of rank k, including the sentence ϕ. But
A is even and B is odd, so ϕ cannot define the property EVEN. This
argument obviously works for an arbitrary k, so therefore indeed no first-
order sentence defines the property.

The stategy of the previous proof reflects a general phenomenon. We typi-
cally cannot use a single Ehrenfeucht-Fraïssé game to prove related undefin-
ability results. We have to find a suitable game for every possible candidate
quantifier rank.

45 of 59

Characterizing First-Order Logic

The outline of the typical strategy of proving property p undefinable by an
EF-game:

1. Fix an arbitrary k.
2. Find two models A and B, one satisfying the property p and the

other one not.
3. Show that the duplicator has a winning strategy in EFk(A,B).
4. Make sure the above steps work for all k.

Conclude the property is not definable in first-order logic.

46 of 59

Characterizing First-Order Logic
Typically in classical model theory, undefinability results are proved using
the compactness theorem. Although the compactness theorem is not really
on our agenda in this course, we briefly discuss it simply to understand the
peculiarities of finite model theory in relation to classical model theory and
the related usefulness of the Ehrenfeucht-Fraïssé method, i.e., the method
of using Ehrenfeucht-Fraïssé games for proving undefinability results.

If Γ is a set of first-order sentences, we say that Γ is satisfiable if there exists
a model M such that M |= ϕ for all ϕ ∈ Γ.

Theorem 3.20 (Compactness)
Let Φ be a set of first-order sentences. Then the following conditions are
equivalent.
1. Φ is satisfiable.
2. Every finite Φ0 ⊆ Φ is satisfiable.

47 of 59

Characterizing First-Order Logic

We omit the proof of the compactness theorem as the theorem is not really
on our agenda in this course. And there is a reason for not having it on the
agenda, as we shall soon see.

First, to illustrate the classical uses of the compactness theorem, let us
consider models with the vocabulary τ = {R, c1, c2}, where R is a binary
relationsymbol and c1 and c2 constant symbols. Now, we say that a τ -
model M is c1-c2-connected if either c1 = c2 or R(c1, c2) or there are
points a1, . . . , an ∈ M such that

(c1, a1) ∈ R ∧ (a1, a2) ∈ R ∧ . . . ∧ (an, c2) ∈ R.

48 of 59

Characterizing First-Order Logic

Theorem 3.21
c1-c2-connectedness is not definable in first-order logic.

Proof. Suppose, for contradiction, that there exists a sentence θ of first-
order logic that defines c1-c2-connectedness. Define

I ψ0 = ¬R(c1, c2),
I ψn = ¬∃x1 . . . ∃xn

(
R(c1, x1) ∧ R(x1, x2) ∧ R(x2, x3) ∧ · · · ∧ R(xn, c2)

)
.

Let Φ = {¬c1 = c2} ∪
⋃

n ∈N
{ψn} .

Clearly every finite subset of Φ ∪ {θ} is satisfiable, but the set Φ ∪ {θ} is
not. This contradicts the compactness theorem.

49 of 59

Characterizing First-Order Logic

Now, the undefinability result of c1-c2-connectedness is a nice result, but
what does it say about the realm of finite models? Indeed, our argument
does not prove that c1-c2-connectedness is undefinable with respect to finite
{c1, c2,R}-models. Indeed, there are many results that are undefinable in
general but become definable when limiting attention to finite models. The
most trivial example is the property of having an infinite domain. It is
well known (proof omitted here) that this property is not definable in FO,
but it is trivially definable with respect to the class of finite models by the
sentence ∀x(¬x = x).

Thus we may ask the question, does the compactness theorem hold in
relation to finite models? Can we use it in finite model theory?

50 of 59

Characterizing First-Order Logic

Theorem 3.22
Compactness fails in the finite, i.e., there exists a set Θ of first-order sen-
tences such that each finite subset of Θ has a finite model, but there exists
no finite model satisfying Θ.

51 of 59

Characterizing First-Order Logic

Proof. Let ϕn be the sentence that states that there are at least n elements
in the model domain:

ϕn = ∃x1 . . . ∃xn
∧

i ,j∈{1,...,n}, i 6=j
xi 6= xj .

Now, consider the set S =
⋃

n>1
{ϕn}. It is clear that every finite subset of

S has a finite model, but S is not satisfied by any finite model.

52 of 59

Characterizing First-Order Logic

Therefore the general form of compactness fails in relation to finite models.
Thus we use other methods to investigate the limits of expressibility of
first-order logic in finite model theory. The number one related method is
the use of the Ehrenfeucht-Fraïsse game.

53 of 59

Characterizing First-Order Logic

Let C be the class of finite models (M, <) where < is a strict linear order of
the elements in M. Consider the property that the domain of a model has
cardinality divisible by 3. Let C3 ⊆ C be the subclass of C of models whose
domain cardinality is divisible by 3. Is C3 definable in first-order logic with
respect to the class C?

54 of 59

Characterizing First-Order Logic

The class C3 is not definable in first-order logic with respect to the class C
of models. For consider Theorem 2.7 which stated the following:

Let S = (S, <M) and T = (T , <N) be {<}-models interpreting < as strict
linear order. Let k ∈ Z+. If |S| > 2k and |T | > 2k , then S ∼=k T.

We can use this theorem in the standard way to get the desired undefinability
result. Indeed, suppose C3 is definable by a formula ϕ of rank k with respect
to C. Now let A = (A, <A) have a cardinality divisible by 3 but greater
than 2k , and let B = (B, <B) have a cardinality not divisible by 3 but
greater than 2k . By the theorem, the duplicator has a winning strategy in
the k-round game between A and B, so the models must satisfy the same
first-order sentences up to rank k. Thus ϕ must be satisfied by both or
neither of the models. This is a contardiction.

55 of 59

Second-Order Logic

First-order logic has quite a limited expressibility. We shall now look at
some of its extensions. To define the syntax of monadic second-order
logic, we first define the set VAR2,1 to be the countably infinite set

{X1,X2, . . . }

of monadic second-order variable symbols.

The syntax of monadic second-order logic (or MSO) is obtained by ex-
tending the formula construction rules for τ -formulae of first-order logic by
the following rules:
I If t is a τ -term and Xi ∈ VAR2,1, then Xi (t) is a formula.
I if ϕ is a formula, then so is ∃Xi ϕ.

56 of 59

Second-Order Logic
To define the semantics of monadic second-order logic MSO, we use second-
order assignment functions f : V → A ∪ P(A) that map from some set

V ⊆ VAR ∪VAR2,1

such that first-order variables map to elements f (x) ∈ A as before, and
monadic second order variables Xi map to subsets f (Xi) ∈ P(A) of A (so
here P(A) denotes the power set of A). The semantics is as follows.

A, f |= Xi (t) ⇔ tA,f ∈ f (Xi)
A, f |= R(t1, . . . , tn) ⇔ (tA,f

1 , . . . , tA,f
n) ∈ RA

A, f |= t1 = t2 ⇔ tA,f
1 = tA,f

2
A, f |= ¬ϕ ⇔ not A, f |= ϕ
A, f |= ϕ ∧ ψ ⇔ A, f |= ϕ and A, f |= ϕ
A, f |= ∃x ϕ ⇔ there exists a ∈ A such that A, f [x 7→ a] |= ϕ
A, f |= ∃Xi ϕ ⇔ there exists U ⊆ A such that A, f [Xi 7→ U] |= ϕ

57 of 59

Second-Order Logic

Similarly to first-order logic, we use ∀Xi to denote ¬∃Xi¬.

Let C denote the class of finite models (M, <) where < is a strict linear
order. We showed above that first-order logic cannot define, with respect
to C, the property that the model has a domain of cardinality divisible by
three. Find a sentence of MSO that defines this property with respect to
the class C.

58 of 59

Second-Order Logic
Define

ϕuniq = ∀x
(
(X1(x) ∧ ¬X2(x) ∧ ¬X3(x))
∨(¬X1(x) ∧ X2(x) ∧ ¬X3(x))
∨(¬X1(x) ∧ ¬X2(x) ∧ X3(x))

)
.

and
ϕsuccessor (x , y) = x < y ∧ ∀z(x < z → (z = y ∨ y < z))

and
first(x) = ¬∃y(y < x) and similarly last(x) = ¬∃y(x < y).

The desired formula is
∃X1∃X2∃X3

(
ϕuniq ∧ ∃x(first(x) ∧ X1(x)) ∧ ∃x(last(x) ∧ X3(x))

∧ ∀x∀y
(

(ϕsuccessor (x , y) ∧ X1(x) → X2(y))

∧ (ϕsuccessor (x , y) ∧ X2(x) → X3(y))

∧ (ϕsuccessor (x , y) ∧ X3(x) → X1(y))
))
.

59 of 59

	

