Relating description complexity to entropy

Reijo Jaakkola, Antti Kuusisto, Miikka Vilander University of Tampere, Finland

Description complexity

Description complexity of a property: the **minimum length** of a formula defining the property.

Description complexity

Description complexity of a property: the **minimum length** of a formula defining the property.

Depends on the logic studied.

Modal logic with the universal modality:

 $p \mid \neg \varphi \mid \varphi \land \psi \mid \blacklozenge \varphi$

Modal logic with the universal modality:

 $p \mid \neg \varphi \mid \varphi \land \psi \mid \blacklozenge \varphi$

 $\mathfrak{M}, w \models \phi \varphi \quad \Leftrightarrow \quad \mathfrak{M}, u \models \varphi \text{ for some } u \in domain(\mathfrak{M})$

Let $\tau = \{p_1, \dots, p_k\}$ be a finite vocabulary consisting of proposition symbols.

A τ -model \mathfrak{M} is a structure (W, V) where

- 1. W is a finite, non-empty **domain**,
- 2. $V : \tau \to \mathcal{P}(W)$ is a valuation function.
- A pointed model is a pair (\mathfrak{M}, w) with $w \in W$.

We study the setting with a finite "universe" \mathcal{U} consisting of all τ -models with the finite domain $\{1, \ldots, n\}$ of size n.

This logic is **expressively complete** for defining **sets of propositional assignments**.

Graded modal logic with universal modality:

$$p \mid \neg \varphi \mid \varphi \wedge \psi \mid igodel^{\geq d} \varphi$$

Graded modal logic with universal modality:

$$p \mid \neg \varphi \mid \varphi \wedge \psi \mid igodel^{\geq d} \varphi$$

$$\mathfrak{M}, w \models \mathbf{A}^{\geq d} \varphi \quad \Leftrightarrow \quad \mathfrak{M}, u \models \varphi \text{ for at least } d \text{ elements} \\ u \in domain(\mathfrak{M})$$

This logic is **expressively complete** for defining **multisets of propositional assignments**.

GMLU: graded modal logic with universal modality **MLU**: modal logic with universal modality (so d = 1)

Formulas in negation normal form.

Formula size:

- $size(\alpha) = 1$ for a literal α ,
- $size(\varphi \lor \psi) = size(\varphi \land \psi) = size(\varphi) + size(\psi) + 1$,
- $size(\blacklozenge^{\geq d}\varphi) = size(\blacksquare^{< d}\varphi) = size(\varphi) + d.$

$$\blacksquare^{< d}$$
 is the dual of $\blacklozenge^{\geq d}$ equivalent to $\neg \blacklozenge^{\geq d} \neg$

Entropy

Entropy:

- ► A family of notions relating to randomness.
- The notions come from thermodynamics, statistical mechanics and information theory.

Shannon entropy for a distribution $p: X \rightarrow [0, 1]$ is

$$-\sum_{y\in X} p(y) \log p(y)$$

Entropy

Shannon entropy: $H_S(\equiv) := -\sum_{i \in I} p(M_i) \log p(M_i)$

▶ \equiv is logic-based equivalence relation over the model class \mathcal{U} .

- $M_i \subseteq \mathcal{U}$ with $i \in I$ are the equivalence classes.
- $\blacktriangleright p(M_i) = \frac{|M_i|}{|\mathcal{U}|}$

Boltzmann entropy: $k_B \ln \Omega$

- Ω is a set of microstates.
- k_B is the Boltzmann constant.

Boltzmann entropy: $H_B(M_i) := \log |M_i|$

where M_i is an equivalence class

Boltzmann entropy: $H_B(M_i) := \log |M_i|$

where M_i is an equivalence class

Suppose φ defines M_i w.r.t. \mathcal{U} .

Intuitively, each $\mathfrak{M} \in M_i$ is a microstate realizing the macrostate φ

Proposition. $H_S(\equiv) + \langle H_B \rangle = \log(|\mathcal{U}|)$

Theorem. In MLU, among the equivalence classes of \equiv , the largest equivalence class M_i has maximum description complexity (i.e., requires a formula of maximum length).

Corollary. In MLU, the equivalence class with maximum Boltzmann entropy has maximum description complexity.

Theorem. In MLU, among the equivalence classes of \equiv , the largest equivalence class M_i has maximum description complexity (i.e., requires a formula of maximum length).

Corollary. In MLU, the equivalence class with maximum Boltzmann entropy has maximum description complexity.

- ► Holds for sufficiently large models.
- The largest class is the one realizing all types. (Recall types are maximally consistent conjunctions of literals.)

The proof uses formula length games.

- Game position: $(\mathcal{A}, \mathcal{B}, r)$ where
 - \mathcal{A} and \mathcal{B} classes of pointed models (\mathfrak{M}, w) .
 - $r \in \mathbb{N}$
- Disjunction move
 - 1. Samson chooses A_0, A_1 such that $A_0 \cup A_1 = A$, and Samson also chooses s, t such that s + t = r.
 - 2. Delilah chooses the next position which is either
 - $(\mathcal{A}_0, \mathcal{B}, s)$ or
 - $(\mathcal{A}_1, \mathcal{B}, t)$
- Diamond move
 - 1. Samson modifies each $(\mathfrak{M}, w) \in \mathcal{A}$ to some (\mathfrak{M}, w')
 - 2. The game continues from $(\mathcal{A}', \mathcal{B}', r-1)$ where
 - \mathcal{A}' contains the models (\mathfrak{M}, w')
 - 𝔅' contains all models (𝔅, ν') obtainable by modifying models (𝔅, ν) ∈ 𝔅.

► Literal move:

• Samson chooses a literal α , and the game ends.

• Samson wins if $\mathcal{A} \models \alpha$ and $\mathcal{B} \models \neg \alpha$.

Literal move:

- Samson chooses a literal α , and the game ends.
- Samson wins if $\mathcal{A} \models \alpha$ and $\mathcal{B} \models \neg \alpha$.

Theorem: Samson has a winning strategy for $(\mathcal{A}, \mathcal{B}, r)$ iff there is a formula φ of size at most r such that $\mathcal{A} \models \varphi$ and $\mathcal{B} \models \neg \varphi$.

To show the class with models realizing all types requires a maximum length formula, we let

- $\mathcal{A} = \{(\mathfrak{M}, w)\}$ where \mathfrak{M} realizes all types, and
- \blacktriangleright *B* is a class with all the models omitting precisely one type.

Theorem: For GMLU, we have $\langle H_B \rangle \sim |\tau| \langle C \rangle$

- $\langle H_B \rangle$ is expected Boltzmann entropy.
- au is the propositional vocabulary considered.
- $\langle C \rangle$ is expected description complexity.

Ingredients of the proof:

- We prove $\langle H_B \rangle \sim |\tau| n$ by a calculation utilizing, inter alia, the Stirling approximation, the weak law or large numbers and further sophisticated estimates.
- We show $\langle C \rangle \sim n$ by a formula-size game for GMLU.

We show that the expected description complexity of $\equiv_{\rm FO}$ grows asymptotically faster than its expected Boltzmann entropy.

- Show description complexity of an isomorphism class is $\Omega(\frac{n^m}{\log(n)})$ with high probability.
- Use this to get an estimate for expected description complexity, and compare this to an estimate for expected Boltzmann entropy.

Thanks