
Finite model theory
2. Games

1 of 47



Games: general issues

in finite model theory, games are typically used to show that certain prop-
erties are not expressible is certain logics. These are typically referred to
as ‘undefinability results’. Let us briefly discuss informally what this all is
about—we shall define all the notions in this slide in detail later on formally,
beginning from the next slide.

Typically, a logic L is associated with a class G of games, and the in-
dividual games in G ∈ G can then be used to show that some relevant
properties of interest cannot be expressed in L with sentences satisfying
some syntactic restrictions dictated by G . For example, the class GEF of
so-called Ehrenfeucht-Fraïssé games can be used to study first-order logic
FO. So-called ‘Ehrenfeucht-Fraïssé games EFk ∈ GEF of rank k’ can be
used to identify properties that cannot be defined by sentences of FO with
‘quantifier rank k or less’.
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Ehrenfeucht-Fraïssé Game

The Ehrenfeucht-Fraïssé game is a type of game that can be used to mea-
sure similarity of models of the same vocabulary. The game is played by
two players, the spoiler and duplicator. Sometimes the players are also
called Abelard and Eloise, or player I and player II.

Let τ be a purely relational vocabulary. Let A and B be τ -models, and
let k ∈ N. The rank k Ehrenfeucht-Fraïssé game EFk(A,B) between
A and B is played by the spoiler and duplicator for k-rounds, each round
consisting of the following actions:

1. The spoiler picks an element v of one of the models.
2. The duplicator responds by picking an element u of the other model.
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Ehrenfeucht-Fraïssé Game

The moves of the players are encoded in stages. The stage 0 (or zeroeth
stage) is the pair (

(A, ∅), (B, ∅)
)
.

The ith stage (or stage i) is a pair of type(
(A, (a1, . . . , ai)), (B, (b1, . . . , bi))

)
where aj ∈ A and bj ∈ B are the jth elements picked by the players.

Note: it is of course to leave some of the brackets unwritten as long as it
is clear what is meant.
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Ehrenfeucht-Fraïssé Game

The duplicator loses (and spoiler wins) at the jth stage
(

(A, (a1, . . . , aj)), (B, (b1, . . . , bj))
)

if {(a1, b1), . . . , (aj , bj)} is not a partial isomorphism from A to B. No
further moves are made in this case, and the jth stage is called an ending
position or a final stage.
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Ehrenfeucht-Fraïssé Game

The last possible stage in EFk(A,B) is(
(A, (a1, . . . , ak)), (B, (b1, . . . , bk))

)
.

The spoiler loses (and duplicator wins) if {(a1, b1), . . . , (ak , bk)} is a partial
isomorphism from A to B. Otherwise the duplicator loses and spoiler wins.

Thereby the task of the duplicator is to maintain a partial isomorphism
between the models (intuitively duplicating the choices of the spoiler). The
spoiler’s task is to break the partial isomorphism (spoil it).
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Ehrenfeucht-Fraïssé Game

Thereby the duplicator’s goal is sometimes referred to as a safety goal while
the spoiler’s goal is a reachability goal. Indeed, the duplicator is trying to
maintain a ‘safe’ stage and the spoiler—on the other hand—is trying to
reach a stage where the partial isomorphism no longer holds.

Note that precisely one of the players will succeed and win, and the other
player will lose.

Reachability and safety are more generally paradigmatic concepts in algo-
rithmic game theory and automata theory...
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Ehrenfeucht-Fraïssé Game

The sequence

0.
(

(A, ∅), (B, ∅)
)

1.
(

(A, a1), (B, b1)
)

2.
(

(A, (a1, a2)), (B, (b1, b2))
)

...

i.
(

(A, (a1, . . . , ai)), (B, (b1, . . . , bi))
)
,

where stage i ≤ k is the final stage, is called a play of the game EFk(A,B).
Note that thus we differentiate between the game and a play of that
game. Indeed, there are generally several plays associated with the game
EFk(A,B).
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Ehrenfeucht-Fraïssé Game
A strategy of the spoiler in EFk(A,B) is function that outputs, with
the input of a stage, a move (i.e., an element in one of the domains of
the two models) for the spoiler. Strictly speaking, the output is a pair
(d ,M) where d is the element chosen and M ∈ {A,B} the model from
which d was chosen; the only reason we need to write M into the output
specification is that the models A and B could have overlapping domains.
A strategy of the duplicator is a function that outputs, with the input of
a stage and the spoiler’s most recent move, a response by the duplicator,
i.e., an element in the model where the spoiler did not choose. For example,
the duplicator’s strategy could output bi+1 with the input(

(A, (a1, . . . , ai , ai+1)), (B, (b1, . . . , bi))
)
,

leading to the stage(
(A, (a1, . . . , ai , ai+1)), (B, (b1, . . . , bi , bi+1))

)
.

Note that the input to the strategy function is not strictly speaking a stage,
because we have the extra move ai+1 of the spoiler marked, and thus the
tuples (a1, . . . , ai , ai+1) and (b1, . . . , bi) are of different lengths.
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Ehrenfeucht-Fraïssé Game

However, the output tuple(
(A, (a1, . . . , ai , ai+1)), (B, (b1, . . . , bi , bi+1))

)
is a legitimate stage.

Note carefully that the spoiler can always choose from either of the models
A andB. In our example above, the spoiler chose from A and the duplicator
responded by choosing from B, but this can be also the other way around.
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Ehrenfeucht-Fraïssé Game

Definition 2.1
A strategy for the spoiler (respectively, the duplicator) is a winning strat-
egy in EFk(A,B) if the spoiler (respectively, duplicator) wins every play of
the game EFk(A,B) where the choices are made according to the strategy.

Rather than writing explicitly the function corresponding to a winning strat-
egy, we typically describe winning strategies informally (but nevertheless
rigorously).
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Ehrenfeucht-Fraïssé Game

Consider the game EF2(G,G′). We will show that the duplicator has a
winning strategy in this game. Indeed, suppose the spoiler chooses a point
s1 ∈ G ∪ G ′ in the first round. Let us first assume that s1 6∈ {2, 6}. The
duplicator responds by a choice d1 6∈ {2, 6} from the other model. Now
suppose the spoiler chooses s2. There are several cases.
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Ehrenfeucht-Fraïssé Game

1. If s2 is a node that was already chosen in round 1, then the duplicator
can clearly also choose d2 from the other model to be a node that
was already chosen in round 1. Thus the duplicator wins the game.
Thereby we now assume that s2 does not repeat an already chosen
node. Note that the duplicator can always respond to such repeated
choices also in longer games and in all models, so we do not really
have to in general take such repetition moves into account.
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Ehrenfeucht-Fraïssé Game

2. If s1 and s2 are in the same model M ∈ {G,G′} and it holds that
(s1, s2) ∈ EM, then the duplicator can clearly choose a node d2 from
the other model N so that (d1, d2) ∈ EN. Thus the duplicator wins.

3. If s1 and s2 are in the same model M ∈ {G,G′} and it holds that
(s1, s2) 6∈ EM, then the duplicator can clearly choose a node d2 from
the other model N so that (d1, d2) 6∈ EN. Thus the duplicator wins.
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Ehrenfeucht-Fraïssé Game

2. If s1 and s2 are in different models and it holds that (d1, s2) ∈ EM,
then the duplicator can clearly choose a node d2 from the other model
N so that (s1, d2) ∈ EN. Thus the duplicator wins.

3. If s1 and s2 are in different models and it holds that (d1, s2) 6∈ EM,
then the duplicator can clearly choose a node d2 from the other model
N so that (s1, d2) 6∈ EN. Thus the duplicator wins.
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Ehrenfeucht-Fraïssé Game

We still need to discuss the case where the spoiler begins by choosing
s1 ∈ {2, 6}. Then the duplicator responds by choosing d1 = {2, 6} \ {s1}.
The rest of the game is easy for the duplicator, as it is necessary that the
spoiler chooses s2 so that it links via E directly to the earlier move in that
model.1 It is then trivial for the duplicator to choose a likewise linking node
from the other model.
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Ehrenfeucht-Fraïssé Game

We showed that the duplicator has a winning strategy in the game EF2(G,G′).
To contrast this result, it is easy to show that the duplicator does not have
a winning strategy in EF3(G,G′). This is easy, the spoiler simply first
chooses 0, then 1 and finally 2. There is no cycle like this in G′, so the
duplicator cannot win, no matter what the response moves are.
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Ehrenfeucht-Fraïssé Game

Definition 2.2
We write A ∼=k B if the duplicator has a winning strategy in EFk(A,B).
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Ehrenfeucht-Fraïssé Game

We used stages of type(
(A, (a1, . . . , ai)), (B, (b1, . . . , bi)

)
for defining the Ehrenfeucht-Fraïssé game. We can alternatively define this
stage as the triple (

A, B, {(a1, b1), . . . , (ai , bi)}
)

where {(a1, b1), . . . , (ai , bi)} is now explicitly the partial isomorphism at
the ith stage. This is simply an alternative representation of stages, and it
is clear that it makes no difference which representation we use. This new
representation is especially handy when we discuss pebble games below.

Note, the zeroeth stage in this new representation is of course (A,B, ∅),
where ∅ now represents the empty partial isomorphism.
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Pebble Game

We will next discuss the pebble game. It is similar to the Ehrenfeucht-
Fraïssé game but can be played for an infinite number of rounds. Rather
than relating to first-order logic like the Ehrenfeucht-Fraïssé game, the
pebble game characterizes some infinitary logics—as we shall show later on
in the course.
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Pebble Game

LIke the Ehrenfeucht-Fraïssé game, the pebble game is played by two play-
ers, again called the spoiler and duplicator (also Abelard and Eloise, or
player I and player II).

Let τ be a purely relational vocabulary. Let A and B be τ -models, and let
k ∈ N. The k-pebble game PGk(A,B) between A and B is played by
the spoiler and duplicator for indefinitely many rounds, possibly infinitely
long. A play of the k-pebble begins from the zeroeth stage

(A,B, ∅)

and proceeds exactly as the Ehrenfeucht-Fraïssé game up to stage k

(A,B, {(a1, b1), . . . , (ak , bk)}).
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Pebble Game
From the kth stage onwards, the game evolution is as follows:

Let i ≥ k and suppose the ith stage is

(A,B, {(a′1, b′1), . . . , (a′k , b′k)}).
where a′1, . . . , a′k ∈ A and b′1, . . . , b′k ∈ B. (Note indeed that we have
exactly k nodes picked from both models.) Then the (i + 1)st stage is
determined such that
1. The spoiler erases one pair (a′j , b′j) from the partial isomorphism
{(a′1, b′1), . . . , (a′k , b′k)} and picks either
I and element a ∈ A or
I an element b ∈ B.

2. In the first case (the spoiler picking a ∈ A), the duplicator picks an
element b′ ∈ B and the (i + 1)st stage is (A,B, p) where p is ob-
tained from {(a′1, b′1), . . . , (a′k , b′k)} by replacing (a′j , b′j) by (a, b′). In
the second case (spoiler picking b ∈ B), the duplicator picks some
a′ ∈ A and the (i + 1)st stage is (A,B, q) where q is obtained from
{(a′1, b′1), . . . , (a′k , b′k)} by replacing (a′j , b′j) by (a′, b).
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Pebble Game

So intuitively, the stage (A,B, fi) (with i ≥ k) becomes replaced by
(A,B, fi+1) where fi+1 is obtained from fi such that

1. the spoiler removes one pair from fi
2. chooses an element from one model
3. the duplicator chooses a corresponding element from the other model
4. the resulting new pair is inserted into the partial isomorphism and

thereby fi+1 is obtained.

Note that both fi and fi+1 have precisely k pairs of nodes. The stages
0, . . . , k−1 involve smaller partial isomorphisms, but from stage k onwards,
they will indeed always have k pairs. Note also that there can be up to N
stages, so the play of the game can indeed last for infinitely many rounds.
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Pebble Game

For each j ∈ N, the duplicator loses (and spoiler wins) at the jth stage

(A,B, fj)

if fj is not a partial isomorphism from A to B. No further moves are made
in this case, and the jth stage is called an ending position or a final stage.
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Pebble Game

The possibly infinite sequence

0: (A,B, ∅)

1: (A,B, {(a1, b1)})

2: (A,B, {(a1, b1), (a2, b2)})
...

i ≥ k: (A,B, {(a′1, b′1), . . . (a′k , b′k)})
...

is called a play of the game PGk(A,B). The duplicator wins the play if
the game goes on for infinitely long and thereby the spoiler never succeeds
to break the partial isomorphism.
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Pebble Game

A strategy of the spoiler in PGk(A,B) is function that takes as in input
an ith stage (A,B, p) and outputs a tuple (t,m,M) specified as follows.

I If i ≥ k, then the t ∈ p is a tuple to be removed from the partial
isomorphism p. If i < k, then t = ∅.

I M ∈ {A,B} and m is an element of M. The element m is the new
choice of the spoiler.

The reason we include M in the output is that the domains of A and B
could overlap, and then it would not necessarily be clear which model m
belongs to.

26 of 47



Pebble Game
A strategy of the duplicator in PGk(A,B) is function that takes as
in input a pair ((A,B, p), (t,m,M)) where (A,B, p) is an ith stage and
(t,m,M) is a possible answer to that stage given by some strategy of the
spoiler. Given such an input, the output of the strategy of the duplicator
is an element m′ belonging to the model M′ ∈ {A,B} \ {M}.

This results in an (i+1)st stage (A,B, q) where q is the partial isomorphism
specified as follows.
1. If i ≤ k, then

I q = p ∪ {(m,m′)} if M = A,
I q = p ∪ {(m′,m)} if M = B.

2. If i > k, then
I q = (p \ {t}) ∪ {(m,m′)} if M = A,
I q = (p \ {t}) ∪ {(m′,m)} if M = B.
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Pebble Game

Definition 2.3
A strategy for spoiler (respectively, the duplicator) is a winning strategy
in PGk(A,B) if the spoiler (respectively, duplicator) wins every play of the
game PGk(A,B) where the choices are made according to the strategy.

As for EF-games, we typically describe winning strategies informally (but
nevertheless rigorously).
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Pebble Games

Having defined the type of functions that define strategies in the pebble
game, we can now state and prove the following theorem.

Theorem 2.4
Let A and B be finite models. Every strategy for the duplicator as well as
spoiler in PGk(A,B) is finite.

Proof.
The claim is immediate, as due to A and B being finite, there are only
finitely many possible inputs to any strategy.

The significance of the theorem lies in the fact that pebble game plays
can be infinite. Still, strategies are always finite on finite models.
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Pebble Games

Theorem 2.5
Let A and B be finite models. There exist finitely many strategies for the
duplicator as well as for the spoiler in PGk(A,B).

Proof.
As A and B are finite, and thereby there are at most finitely many inputs to
any strategy, it is easy to see that there exist only finitely many strategies.

It is also worth noting that if we play PGk(A,B) for enough many rounds,
either the play will end with one player winning, or we shall end up repeating
a stage.
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Pebble Game

Consider the graphs G and H. It is easy to show that the duplicator has a
winning strategy in EF2(G,H). We will now show that, nevertheless, the
duplicator does not have a winning strategy in PG2(G,H). In fact, we shall
establish that the spoiler has a winning strategy in PG2(G,H).
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Pebble Game

The spoiler first chooses the node 0 from G. If the duplicator chooses c
or d , then the spoiler will win in round two by choosing 1. Therefore we
assume that the duplicator chooses a (the case for the choice b is the same
due to symmetry, so we can ignore it). Thus the partial isomorphism after
round one is {(0, a)}. Then, in round two, the spoiler chooses 3 and the
duplicator d (the case for the choice c is the same due to symmetry). The
partial isomorphism is {(0, a), (3, d)}. Now the spoiler erases (0, a) and
chooses 1. Now the duplicator does not have a suitable choice, because d
does not have an edge anywhere. Thus the duplicator loses.
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Constants in games

So far we considered the Ehrenfeucht-Fraïssé game and the pebble game
over purely relational vocabularies. Adding constants to the vocabulary
under consideration is easy. The idea is to think of constants as elements
that have already been chosen in rounds before the play of the game even
begins.
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Constants in games
Let us first consider the Ehrenfeucht-Fraïssé game. Let A and B be τ -
models over a relational vocabulary τ where c1, . . . , cr ∈ τ are constant
symbols. Recall that the initial stage (i.e., stage 0) in EFk(S,T) for models
S and T over a purely relational vocabulary was

((S, ∅), (T, ∅))

and an ith position (i.e., ith stage) was of type

((M, (s1, . . . , si)), (T, (t1, . . . ti))).

The stage 0 of EFk(A,B) is

((A, (cA1 , . . . , cAr )), (B, (cB1 , . . . , cBr )))

and an i-th stage is of type

((A, (cA1 , . . . , cAr , a1, . . . , ai)), (B, (cB1 , . . . , cBr , b1, . . . , bi))).
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Constants in games

The final kth stage is of type

((A, (cA1 , . . . , cAr , a1, . . . , ak)), (B, (cB1 , . . . , cBr , b1, . . . , bk))).

Altogether, a play of the game EFk(A,B) is the same as for purely re-
lational vocabularies, but the initial zeroeth stage partial isomorphism is
{(cA1 , cB1 ), . . . , (cAr , cBr )} while with purely relational vocabularies, the ze-
roeth stage partial isomorphism is the empty set. The ith stage partial
isomorphims in EFk(A,B) is then of type

{(cA1 , cB1 ), . . . , (cAr , cBr ), (a1, b1), . . . , (ai , bi)}

rather than of type {(s1, t1), . . . , (si , ti)} as in the game EFk(S,T) with
models of a purely relational vocabulary.
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Constants in games

The moves and winning conditions in EFk(A,B) are exactly the same as in
the game without constant symbols, but now taking into account the full
partial isomorphism {(cA1 , cB1 ), . . . , (cAr , cBr ), (a1, b1), . . . , (ai , bi)} at each
stage i .

Note that this implies that it is possible to win EFk(A,B) already at the
zeroeth stage. Indeed, if {(cA1 , cB1 ), . . . , (cAr , cBr )} is not a partial isomor-
phism, then the duplicator wins at the zeroeth stage, and the game play
ends there.
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Constants in games

We also used the representation (S,T, p), where p is a partial isomorphism
from S to T to represent games. Using constants in this framework is done
in a relatively simple way. Letting A and B be as above, the zeroeth stage
of the Ehrenfeucht-Fraïsse game EKk(A,B) is

(A,B, {(cA1 , cB1 ), . . . , (cAr , cBr )}, ∅),

and an ith stage is of type

( A, B, {(cA1 , cB1 ), . . . , (cAr , cBr )}, {(a1, b1), . . . , (ai , bi)} ).

The task of the duplicator is to maintain the partial isomorphism

{(cA1 , cB1 ), . . . , (cAr , cBr )} ∪ {(a1, b1), . . . , (ai , bi)}.
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Constants in games

The only reason we are not writing a function

{(cA1 , cB1 ), . . . , (cAr , cBr ), (a1, b1), . . . , (ai , bi)}

to the technical specification of the ith stage

( A, B, {(cA1 , cB1 ), . . . , (cAr , cBr )}, {(a1, b1), . . . , (ai , bi)} ),

but instead write two functions

{(cA1 , cB1 ), . . . , (cAr , cBr )} and {(a1, b1), . . . , (ai , bi)},

relates to the pebble game. Indeed, as we shall see, the spoiler should not
modify (remove tuples from) {(cA1 , cB1 ), . . . , (cAr , cBr )} in the pebble game.
Tuples should only be removed from {(a1, b1), . . . , (ai , bi)}.
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Constants in games
We begin the pebble game PGk(A,B) from

(A,B, {(cA1 , cB1 ), . . . , (cAr , cBr )}, ∅)

and an ith stage for i ≤ k looks like

(A,B, {(cA1 , cB1 ), . . . , (cAr , cBr )}, {(a1, b1), . . . , (ai , bi)}).

The ith stage for i > k looks like

(A,B, {(cA1 , cB1 ), . . . , (cAr , cBr )}, {(a′1, b′1), . . . , (a′k , b′k)}).

The rules of the game are as in the case for purely relational vocabularies:
The players first construct the partial isomorphism {(a1, b1), . . . , (ai , bi)} in
stages i ≤ k and then keep altering {(a′1, b′1), . . . , (a′i , b′i)} in the subsequent
stages as before—the spoiler removing a tuple, introducing and element,
and the duplicator responding by an element from the other model.
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Constants in games

However, the task of the duplicator is to maintain the partial isomorphism

{(cA1 , cB1 ), . . . , (cAr , cBr )} ∪ {(a′′1 , b′′1 ), . . . , (a′′j , b′′j )})

at every stage

(A,B, {(cA1 , cB1 ) . . . , (cAr , cBr )}, {(a′′1 , b′′1 ), . . . , (a′′j , b′′j )})

of the play of the game. Therefore it is—just like in EF-games with
constants—possible for the duplicator to lose already at the zeroeth stage.

As already discussed above, we mention once more that the players only
modify the second one of the two isomorphisms of a stage

(A,B, {(cA1 , cB1 ) . . . , (cAr , cBr )}, {(a′′1 , b′′1 ), . . . , (a′′j , b′′j )}).
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Constants in games

The following theorem is trivial.

Theorem 2.6
Let A, B and C be τ -models for a relational vocabulary τ . Suppose A and
B are isomorphic.
1. If the duplicator (respectively, spoiler) has a winning strategy in

EFk(B,C), then the duplicator (respectively, spoiler) has a winning
strategy in EFk(A,C).

2. If the duplicator (respectively, spoiler) has a winning strategy in
PGk(B,C), then the duplicator (respectively, spoiler) has a winning
strategy in PGk(A,C).

As for Ehrenfeucht-Fraïssé games with purely relational vocabularies, also
for models with additional constant symbols, we write A ∼=k B to indicate
that the duplicator has a winning strategy in EFk(A,B).
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Further examples on playing games

Consider two models A and B over the vocabulary {R}, where R is a binary
relation symbol. Suppose that RA is transitive and RB is not. Does it hold
that A ∼=4 B, i.e., that the duplicator has a winning strategy in EF4(A,B)?
Justify your answer.
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Further examples on playing games

We shall disprove the claim by showing that the spoiler has a winning
strategy already in EF3(A,B), i.e., the spoiler can always win with three
moves.

Now, RB is not transitive, so there exist points b1, b2, b3 ∈ B such that
(b1, b2) ∈ RB and (b2, b3) ∈ RB while (b1, b3) 6∈ RB. The spoiler chooses
these points in rounds 1, 2 and 3. No matter how the duplicator responds
in A, the spoiler’s pattern in B cannot be matched because A is transitive.
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Further examples on playing games

The next example is more difficult. We skecth the proof of the below
theorem (with enough details for you to easily fill in the gaps).

Theorem 2.7
Let S = (S, <M) and T = (T , <N) be {<}-models interpreting < as strict
linear order. Let k ∈ Z+. If |S| > 2k and |T | > 2k , then S ∼=k T.

Proof Sketch. We assume, without loss of generality, that S = {1, . . . , |S|}
and T = {t1, . . . , |T |}. Consider an r th stage (S, (s1, . . . sr ),T, (t1, . . . , tr ))
where r ≤ k. Suppose the elements here are listed in such an order that
si ≤ si+1 and ti ≤ ti+1 for all i (so the subindex does not here have to mean
the round when the element was picked; this assumption is made simply to
simplify the notation below). Continues...
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Further examples on playing games
Suppose that one of the following conditions holds for each i :
1. si+1 − si ≥ 2k−r and ti+1 − ti ≥ 2k−r .
2. si+1 − si = ti+1 − ti .

Suppose also that one of the following holds
1. s1 − 1 ≥ 2k−r and t1 − 1 ≥ 2k−r .
2. s1 − 1 = t1 − 1.

and that one of the following holds
1. |S| − sr ≥ 2k−r and |T | − tr ≥ 2k−r .
2. |S| − sr = |T | − tr .

Intuitively, the choices have been made such that each ‘neigbouring’ pair
(si , si+1) of pebbles either has the pebbles equally far from each other as the
pebbles (ti , ti+1), or alternatively, both pairs (si , si+1) and (ti , ti+1) have
the pebbles so far from each other (at least 2k−r steps) that the actual
distance does not even matter. A similar condition holds for the (first and
last) pebbles near the endpoints of the linear orders.
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Further examples on playing games
We will next show that if the spoiler chooses w from between si and si+1,
then the duplicator can choose w ′ from between ti and ti+1 so that the
conditions on the previous slide hold for the updated tuples

(s1, . . . , si ,w , si+1, . . . , sr ) and (t1, . . . , ti ,w ′, ti+1, . . . , tr )
and for the updated (decreased) distance 2k−(r+1).
Assume first that si − si+1 ≥ 2k−r . We have three cases.
1. Suppose w − si ≥ 2k−(r+1) and si+1 − w ≥ 2k−(r+1). Now, since

ti+1 − ti ≥ 2k+r and 2 · 2k−(r+1) = 2k−r , the duplicator can choose
w ′ from between these points so that we have w ′ − ti ≥ 2k−(r+1) and
ti+1 − w ′ ≥ 2k−(r+1).

2. Suppose w − si < 2k−(r+1). Now si+1 − w ≥ 2k−(r+1) and the dupli-
cator can choose w ′ so that w ′− ti = w−si and ti+1−w ′ ≥ 2k−(r+1).

3. The case si+1 − w < 2k−(r+1) is similar to the above case.
Suppose then that si+1 − si < 2k−r . Then ti+1 − ti = si+1 − si , so the
interval from si to si+1 is isomorphic to the interval from ti to ti+1, and
therefore the duplicator chooses w ′ so that it is as close to ti and ti+1 as
w is to si and si+1. 46 of 47



Further examples on playing games

We discussed the case where the spoiler chose from S. The case where the
spoiler chooses from T is of course symmetric to this, so we do not need to
discuss that case separately. Also, we discussed the case where the spoiler
chooses from between two already chosen nodes. The cases where the
spoiler chooses an element smaller than s1 or greater than sr are also similar
to the case we discussed. Finally, the cases where the spoiler chooses an
already chosen node can be ignored, as we have observed earlier. Therefore
we have shown that the duplicator can maintain the partial isomorphism
(the respective ordering of all chosen nodes) all the way up to r = k moves.
This concludes the proof of the theorem.
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