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1 Introduction

In these notes we give an overview of the basic results of Fourier analysis
important from the point of view of applications. In particular, we introduce
the reader to Fourier series and the Fourier transform.

Fourier series provide a way to describe periodic functions by an infinite sum
of trigonometric functions. For example, the Fourier series of the periodic
function

f(x) =

{
1 if nπ < x ≤ (n+ 1)π and n is odd
0 if otherwise

is

1

2
− 2

π

( sin(x)

1
+

sin(3x)

3
+

sin(5x)

5
+ . . .

)
.

In a typical application, it is possible to throw away all but some small
finite number of the terms of the infinite Fourier series, and the obtained
finite sum of trigonometric terms gives a very good approximation of
the original function. The point of doing this is that the finite sum
is typically a lot simpler than the original function. Indeed, the above
specification of the function f(x) is quite complex and very difficult to use
in practical calculations. Trigonometric functions are well understood and
generally behave very nicely, thus enabling smooth use in applications and
also in more theoretical studies.
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Figure 1: The figure shows the graph of the Fourier series of the above defined
function f(x) with all the terms up to sin(7x)

7 included. This is already pretty close
to the sawtooth pattern defined by f(x).

Another perspective to the usefulness of Fourier series comes from the anal-
ysis of signals. A signal can typically be represented by a periodic function.
In applications involving the modification of complicated sound waves, it is
often desirable to, inter alia, get rid of some disturbing noises while keeping
most of the soundwave intact. Here we can first decompose the complicated
sound wave to its Fourier series and then find the problematic harmonic
components and remove them.

Indeed, a Fourier series of a periodic function f(x) provides a fundamental
decomposition of f(x) into trigonometric components of the form

an sin(nωx) and bn cos(nωx)

for n ∈ N. These components can be thought of as the fundamental building
blocks of f(x). Modifying the building blocks, we can modify f(x) in a
powerful way.
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It is worth noting that the notion of a fundamental building block is om-
nipresent in mathematics. In linear algebra, the basis vectors of a vector
space can be thought of as the fundamental building blocks with which ev-
erything is built. In number theory, natural numbers decompose into their
prime number representations, so primes are the fundamental building blocks
there. In logic, all formulae can be build from the so-called types using only
the disjunction operation. And the list goes on and on. Modifying a com-
plicated object by first decomposing it into a representation in terms of its
fundamental building blocks is advantageous, as it is often easiest to modify
the object by modifying its simple building blocks.

There are of course other ways of representing functions by infinite series,
such as the Maclaurin and Taylor series. The reader is probably already
familiar with these. For example the the Maclaurin series of sin(x) is

sin
(
x
)

= x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · · =

∞∑
n=0

(
−1
)n(

2n+ 1
)
!
x2n+1.

The Maclaurin expansion is not given in terms of trigonometric functions but
as a combination of the basis functions

1, x, x2, x3, . . .

In Maclaurin series, the function to be expanded ought to be infinitely dif-
ferentiable. Fourier series have different constraints and can often be much
more flexibly obtained.

While Fourier series are used to represent a periodic function by a discrete
sum of trigonometric terms, or alternatively, a sum of complex exponentials,
the Fourier transform is used to represent a general, possibly nonperiodic
function as a superposition of complex exponentials.

As this course is directed towards applications, some mathematical details
must be omitted in the way typical to applied mathematics courses. However,
for the reader interested in a more advanced treatment of the topic, there are
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numerous books discussing the topic in varying levels of detail. In relation
to this, it is worth noting that the definitions of Fourier analysis typically
differ slightly from one source to another, but the main lines of approach are
of course the same.

5



2 Preliminaries

2.1 Periods and circular frequencies

Recall that the domain of a function f is the set D such that f(d) exists.
For example, the domain of sin(t) is R and the domain of sin(t)

t
is R with 0

excluded.

A function f with domain R is periodic if there exists a positive real number
T such that

f(t+ T ) = f(t)

for all real numbers t. The number T is a period of f .

A T -periodic function automatically has several periods, since

f(t+mT ) = t

holds for any mT , where m is non-negative integer. The shortest period of a
periodic function—if such a shortest period exists—is called the fundamen-
tal period of the function.

Example 2.1. The fundamental period of sin(t) is 2π, which means that
sin(t) repeats its value after each interval of 2π but no sooner. Also 4π is a
period of sin(t) (cf. Figure 2), and so is every number m2π for every positive
integer m.
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Figure 2: The figure shows sin(x) plotted from -10 to 10. Both the upper and lower
arrow span a possible period of sin(x); the upper one spans a single fundamental
period (i.e., a distance of 2π) and the lower one a period 4π that amounts to two
fundamental periods.

Example 2.2. Let us find the fundamental period of f(t) = sin(ωt + ϕ),
where ω > 0. Let T denote the fundamental period of the function. We have

sin(ωt+ ϕ) = f(t) = f(t+ T ) = sin(ω(t+ T ) + ϕ) = sin(ωt+ ωT + ϕ),

and thus

sin(ωt+ ϕ) = sin(ωt+ ϕ+ ωT ).

Thus, as the sine function has fundamental period 2π, we must have ωT =
n2π for some n. Thus

T =
n2π

ω
.

As T is the smallest possible positive period, we must have n = 1. Therefore

T =
2π

ω
.
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Here we considered the sine function, but cosine can be analysed similarly,
so we conclude that the following holds.

Let ω > 0 and let A be a non-zero constant. The fundamental period of

both A sin(ωt+ ϕ) and A cos(ωt+ ϕ) is
2π

ω
.

Example 2.3. Find a period of 2 cos(3
2
t+ 9) + sin(3t).

Now, 2 cos(3
2
t+ 9) has the fundamental period

2π
3
2

=
4π

3

and sin(3t) has the fundamental period

2π

3
.

Thus they both have period 4π
3
, as 2 · 2π

3
= 4π

3
.

We defined periodic functions so that they should have all of R as their
domain. However, in Fourier analysis we often study functions that have
no specified values at some isolated points. This is not an issue from the
point of view of the theory we shall develop. Indeed, we could always give an
arbitrary value to the functions in the problematic isolated points or ignore
their behaviour there. This is justified, as it turns out that the Fourier
series of a function f is not affected at all if we change the value of f in
some isolated point t. (This is ultimately due to the fact that the value of
an integral is not changed if the function is changed at some isolated point).
Therefore it makes sense to ignore the isolated points, as we can thereby avoid
unnecessary mathematical clumsiness, and the applications we are interested
in are not affected.
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2.1.1 Frequency

Informally, the frequency of a periodic function is a measure of how fast the
function repeats itself. Consider a periodic function f with the fundamental
period T . The fundamental frequency of f is defined to be 1

T
. Let g be a

periodic function with a period T (which is not necessarily its fundamental
period). The frequency of g with respect to T is defined as 1

T
.

Sometimes the word frequency is used without specifying whether the fun-
damental frequency is meant or not. Then it should always be sufficiently
clear from the context (or irrelevant) what exactly is meant.

Example 2.4. The frequency of sin(t) with respect to the fundamental pe-
riod T = 2π is 1

T
= 1

2π
, which is about 0.159. The frequency of sin(2t) with

respect to its fundamental period π is 1
π
, which is twice the fundamental

frequency of sin(t). Similarly, the frequency of sin(3t) with respect to its
fundamental period 2π

3
is

1
2π
3

=
3

2π
,

three times the fundamental frequency of sin(t).

The fundamental circular frequency ω of a function f with fundamental
period T is defined to be

ω =
2π

T
.

Let g be a function with period T , which is not necessarily the fundamental
period. The circular frequency with respect to T of g is

ω =
2π

T
.

Note that circular frequency is obtained from the frequency simply by mul-
tiplying by 2π. Intuitively, circular frequency tells us—like frequency—how
fast the function repeats itself.
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Example 2.5. The function sin(t) has the fundamental frequency 1
2π

and
the fundamental circular frequency 2π 1

2π
= 1. This means that the function

repeats itself once within 2π. The function sin(ωt+ ϕ) has the fundamental
circular frequency

2π · 1
2π
ω

= ω.

Thus, for a positive integer n, the function sin(nt+ϕ) repeats or peaks exactly
n times within the interval 2π. Thus the fundamental circular frequency of
sin(ωt+ϕ) tells us exactly the number of times the function peaks or repeats
itself within the interval 2π.

In calculations of application oriented Fourier analysis, we make constant use
of some period T and the related circular frequency ω = 2π

T
. In the standard

calculations, it makes no difference whether T and ω = 2π
T

are fundamental
or not.
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2.2 Some properties of functions

Definition 2.6. The left-hand limit of a function f at t = a is the
limit of f at a as t approaches a from below, that is, t is smaller than
a and grows closer to a. We denote it by

f
(
a−
)

= lim
t→a−

f
(
t
)

= lim
h→0+

f
(
a− h

)
.

The right-hand limit at t = a is the limit of f at a as t approaches
a from above, that is, t is greater than a and decreases towards a. We
denote it by

f
(
a+
)

= lim
t→a+

f
(
t
)

= lim
h→0+

f
(
a+ h

)
.

We refer to the left-hand limit and right-hand limit collectively by the term
one-sided limit.

Example 2.7. The Heaviside step function H(t) is defined such that

H(t) =

{
0 if t < 0

1 if t > 0.

We have H(0−) = 0 and H(0+) = 1. Thus H(0−) 6= H(0+). We note that
H does not have a value at 0, but this is unrelated to the one-sided limits of
H being different. Indeed, define a function g such that

g(t) =

{
H(t) if t 6= 0

6 if t = 0.

Now g(0−) = H(0−) = 0 and g(0+) = H(0+) = 1, while g does have a value
at 0. It is also easy to invent functions f such that f(a−) = f(a+) 6= f(a) at
some point a, that is, the one-sided limits are the same but differ from the
value of the function. For example

f(t) =

{
t2 if t 6= 0

6 if t = 0
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is such a function.

We note that sometimes the heaviside function is defined to obtain a value
also at 0.

Definition 2.8. Let f be a function that has a value on every point
of an interval [a, b]. The function f is piecewise continuous in the
interval [a, b] if

1. f(a+) and f(b−) exist (and are not ∞ or −∞),

2. f(c−) and f(c+) exist for all c ∈ (a, b) (and are not ∞ or −∞),

3. f(c+) = f(c) = f(c−) for all c ∈ (a, b) with the possible
exception of finitely many c ∈ (a, b).

The points where the left-hand limits and right-hand limits are not
equal are called points of discontinuity.

Informally, piecewise continuity of f on [a, b] means that [a, b] can be broken
into a finite number of subintervals (u, v) so that

• f is continuous on these subintervals.

• f has a finite limit at the endpoints of each subinterval.

Example 2.9. Define the sign function sgn(t) (also known as the signum
function) as a function with domain R such that

sgn(t) =


−1 if t < 0

0 if t = 0

1 if t > 0.

This function is clearly piecewise continous on every interval [−a, a] despite
the point of discontinuity 0.
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Example 2.10. Let us investigate whether the function

f(t) =


1

t
if t 6= 0

1 if t = 0.

is piecewise continuous in the interval [−1, 1]. We observe that at the point
0, neither f(0−) nor f(0+) exist as a finite value. Thus f is not piecewise
continuous in [1,−1].

It can be shown that functions f that are piecewise continous in [a, b] are
also bounded in [a, b]. This means that there exist bounds l ∈ R and L ∈ R
such that

l < f(c) < L

for all c ∈ [a, b].

Theorem 2.11. Let f be a periodic function with period T , and sup-
pose f is piecewise continuous on [0, T ]. Then

d+T∫
d

f(t) dt =

T∫
0

f(t) dt.

Proof. The existence of the integral

T∫
0

f(t) dt

is clear since we can divide the interval into a finite number of subinter-
vals where f is continuous and then perform a piecewise intergration on the
continuous parts. Similarly, the existence of

d+T∫
d

f(t) dt

13



is clear, as again we can divide the interval into a finite number of pieces and
perform piecewise integration. Remember that a discontinuity at the end of
an interval of integration does not affect the integral.

We now split
d+T∫
d

f(t) dt into three integrals as follows:

∫ d+T

d

f
(
t
)
dt =

∫ 0

d

f
(
t
)
dt+

∫ T

0

f
(
t
)
dt+

∫ d+T

T

f
(
t
)
dt.

We substitute x = t− T to
∫ d+T

T
f
(
t
)
dt and thus observe that

∫ d+T

d

f
(
t
)
dt =

∫ 0

d

f
(
t
)
dt+

∫ T

0

f
(
t
)
dt+

∫ d

0

f
(
x+ T

)
dx

= −
∫ d

0

f
(
t
)
dt+

∫ T

0

f
(
t
)
dt+

∫ d

0

f
(
x
)
dx (Recall f is periodic.)

=

∫ T

0

f
(
t
)
dt.

The point of this theorem is that when integrating over a period, we can
modify the interval of integration freely, as long as the length of the interval
is not altered. This can help a lot in practical calculations.

Before finishing the section of with an example, we give the following defini-
tion that will be useful later on.

Definition 2.12. We say that a function f is n times continuously
differentiable if the nth derivative f (n) exists and is continuous.
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We now demonstrate how to integrate piecewise continuous functions. The
point is that when integrating over an interval [a, b] where a function is
piecewise continuous, we can chop [a, b] at the points of discontinuity and
integrate the finitely many continuous parts separately. Note: it is safe to
skip over the following example on the first reading and return to it later on.

Example 2.13. Let us define the function

f(t) =


1 when 2k < t <

(
2k + 1

)
holds for some k ∈ Z

5 when t = k holds for some k ∈ Z
2 when

(
2k − 1

)
< t < 2k holds for some k ∈ Z.

What is the fundamental period T and the related circular frequency ω?
Evaluate the following definite integrals

an =
2

T

∫ T

0

f
(
t
)

cos
(
nωt

)
dt and bn =

2

T

∫ T

0

f
(
t
)

sin
(
nωt

)
dt,

where n = 0, 1, 2, . . .

Solution: The fundamental period is T = 2 and the related circular fre-
quency is ω = 2π/T = π. We have

a0 =

∫ 2

0

f(t) dt

=

∫ 1

0

1 dt+

∫ 2

1

2 dt = 3.

and for n > 0

an =

∫ 2

0

f(t) cos(nπt) dt

=

∫ 1

0

cos(nπt) dt+

∫ 2

1

2 cos(nπt) dt

=
1

nπ
(sin(nπ · 1)− sin(nπ · 0)) +

2

nπ
(sin(nπ · 2)− sin(nπ · 1)) = 0
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and

bn =

∫ 2

0

f(t) sin(nπt) dt

=

∫ 1

0

sin(nπt) dt+

∫ 2

1

2 sin(nπt) dt

= − 1

nπ
(cos(nπ · 1)− cos(nπ · 0))− 2

nπ
(cos(nπ · 2)− cos(nπ · 1))

=
−1 + (−1)n

nπ
.

Note that the value 5 of the function f at the points of discontinuity t = k
had no effect on the integrals. We could redefine the value 5 arbitrarily, and
the same integrals would be obtained.

2.2.1 Even and odd functions

A function is even iff
f(−t) = f(t)

for all t in the domain of f . This means that f is symmetric with respect to
the y-axis. A function is odd if

f(−t) = −f(t).

for all t in the domain of f . This means that f is symmetric with respect to
the origin.

Example 2.14. The function cos(t) is an example of an even function. Also
for example

t2, t4, |t|
are even functions. Examples of odd functions include, for example,

sin(t), t, t3.

Also the signum function sgn(t) (from Example 2.9) is odd.
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The following diagram is useful when determining whether a function is even
or odd.

even · even = even

odd · even = even · odd = odd

odd · odd = even

These rules are very easy to prove. We verify one of them:

Example 2.15. Let us show that the product of two odd functions is even.
Let f and g be odd. Let h be the function such that h(t) = f(t) · g(t).
Therefore

h(−t) = f(−t) · g(−t) = (−f(t)) · (−g(t)) = f(t) · g(t) = h(t).

Note carefully that these rules for multiplying functions are not identical to
the corresponding rules for multiplying numbers : the product of two odd
numbers is odd.

Also the summation of functions can be associated with similar rules:

even + even = even

odd + odd = odd.

These are also easy to verify. Note that the sum of an even and an odd
function does not have to be even or odd. This is, likewise, easy to show.
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Knowing whether a function is even or odd can simplify integrals a great deal.
Let fodd denote an odd function. Let us integrate fodd over the symmetric
interval [−c, c], where c > 0. We have:

c∫
−c

fodd(t) dt =

0∫
−c

fodd(t) dt +

c∫
0

fodd(t) dt

=

0∫
c

fodd(−t) (−dt) +

c∫
0

fodd(t) dt (by a change of variables)

=

0∫
c

−fodd(t) (−dt) +

c∫
0

fodd(t) dt (since fodd is odd)

=

c∫
0

fodd(t) (−dt) +

c∫
0

fodd(t) dt

= −
c∫

0

fodd(t) dt+

c∫
0

fodd(t) dt

= 0.

Analogously, if geven is an even function, we get

c∫
−c

geven(t) dt =

0∫
−c

geven(t) dt +

c∫
0

geven(t) dt

=

0∫
c

geven(−t) (−dt) +

c∫
0

geven(t) dt (by a change of variables)

=

0∫
c

geven(t) (−dt) +

c∫
0

geven(t) dt (since geven is even)

=

c∫
0

geven(t) dt+

c∫
0

geven(t) dt

= 2

c∫
0

geven(t) dt.
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To summarize,

c∫
−c

f(t) dt = 0 for odd f (1)

c∫
−c

f(t) dt = 2

c∫
0

f(t) dt for even f (2)

It is also useful to know that when differentiating an even function, we obtain
an odd function, and vice versa. We will show this in the course exercises.
The proof uses the chain rule.
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2.3 Scaling and shifting

In this section we list some very simple but important properties of periodic
functions.

2.3.1 Amplitude scaling

Consider multiplying a periodic function f(t) by an amplitude scaling factor
A > 0 so that a new function Af(t) is obtained. This stretches the function
f(t) in the y-direction. For example, sin(t) has the maximum value (or
amplitude) of 1 while 2 sin(t) has maximum value 2. Of course we can also
scale a function with a scaling factor A < 1, and then the function in fact
shrinks in the y-direction.

2.3.2 Time shifting

Shifting the graph of a function f(t) to the left by S ≥ 0 units can be obtained
by defining a new function f(t+ S). The new function f(t+ S) obtains the
same values as f(t) exactly S units before f(t) and thus indeed shifts the
graph to the left. Obviously the opposite effect is obtained by defining the
function f(t− S), which shifts the original function S units to the right.

2.3.3 Time scaling

Decreasing the period of a periodic function f(t) is obtained by defining a
function f(Bt), where B > 1. We call B a time scaling factor. See Figure 3
for an example. The opposite effect—increasing the period—is obtained by
defining f(bt) for some b < 1 and b > 0.
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Figure 3: The figure shows sin(x) and sin(6x) plotted from -4 to 4. Here sin(6x)
is the function with the blue graph, i.e., the function with a smaller fundamental
period.

It is of course possible to combine the scaling and shifting operations by
defining functions such as 6 sin(8t− 10) for example.

Example 2.16. Interestingly, for example sin(6t − 2) shifts sin(6t) not by
two but only 1

3
units to the right. To understand why, write h(t) = sin(6t).

Now, shift h(t) the amount of 1
3
units to the right by defining

h(t− 1

3
) = sin(6(t− 1

3
)) = sin(6t− 2).
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3 Fourier series

Consider an infinite series

S(t) = a0 cos
(
0ωt
)

+ b0 sin
(
0ωt
)

+ a1 cos
(
1ωt
)

+ b1 sin
(
1ωt
)

+ a2 cos
(
2ωt
)

+ b2 sin
(
2ωt
)

+ . . .

(3)

where an, bn and ω are real numbers. This is a very general and elegant1
infinite series formulated in terms of trigonometric functions of increasingly
small periods. For each positive integer n, the coefficient an is the amplitude
and

2π

nω

the smallest period (or fundamental period) of the term an cos(nωt). Sim-
ilarly, bn is the amplitude and 2π

nω
the smallest period of bn sin(nωt). Since

cos(0) = 1 and sin(0) = 0, we have

S(t) = a0 + a1 cos
(
1ωt
)

+ b1 sin
(
1ωt
)

+ a2 cos
(
2ωt
)

+ b2 sin
(
2ωt
)

+ . . .

= a0 +
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))
. (4)

It turns out that many functions can be represented by these kinds of nicely
regular infinite series of trigonometric functions, i.e., in terms of series of the
form

a0 +
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))
.

1By “very general and elegant” we mean that the series is mathematically simple and
regular as opposed to arbitrarily defined, contrived and random looking.
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3.1 Defining Fourier series

A Fourier series S(t) is a series of the form

a0

2
+ a1 cos

(
ωt
)

+ b1 sin
(
ωt
)

+ a2 cos
(
2ωt
)

+ b2 sin
(
2ωt
)
. . .

=
a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))
, (5)

where an, bn and ω are real numbers. Note that this series is almost the same
as the “very general and elegant” series given by Equation 4. The difference
is that here we have a coefficient a0

2
and in Equation 4 the coefficient a0. The

reason we now begin with a term a0
2

instead of a0 is only to simplify some
terms that occur frequently in calculations. Indeed, we could use a0 instead
of a0

2
, but choose otherwise to keep things simpler to read and write.

Let f be a periodic function and T a period of f . The Fourier series of f
is the Fourier series

f̂(t) =
a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))
(6)

such that

1.

an =
2

T

d+T∫
d

f(t) cos(nωt) dt (n = 0, 1, 2, . . . ) (7)

2.

bn =
2

T

d+T∫
d

f(t) sin(nωt) dt (n = 1, 2, . . . ) (8)

where
ω =

2π

T
.

Concerning the notation, notice indeed that we let f̂ denote the Fourier series
of a function f (see Equation 6).

Now, some comments are in order.
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1. At this point the definition may seem a bit arbitrary. Indeed, why do
we define an and bn in this way rather than some other way? This will
be discussed later on in detail in Section 3.1.2.

2. There is no guarantee that the integrals

d+T∫
d

f(t) cos(nωt) dt and
d+T∫
d

f(t) sin(nωt) dt

have defined values. Whether they do or not depends essentially on f .

3. More importantly, given a value of t, it is not clear whether the series
f̂(t) converges, and if it does, whether it converges to f(t).

By definition, a series

S(t) =
a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))
converges to v ∈ R if the sequence of the partial sums

SN(t) =
a0

2
+

N∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))
converges to v. In other words, the series S(t) converges to v if

lim
N→∞

SN
(
t
)

= v.

Intuitively, this means that we can make SN(t) arbitrarily close to v by
making N sufficiently large. Then we may write S(t) = v.

Whether the integrals

d+T∫
d

f(t) cos(nωt) dt and
d+T∫
d

f(t) sin(nωt) dt

have defined values is a theoretical question that is in most cases beyond the
scope of this course. The question can be mostly ignored, as in typical real-life
applications, the integrals indeed do have defined values. The convergence of
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the series f̂(t) to f(t) is a more important question, and we shall discuss it
in detail later on in these notes.

3.1.1 Dirichlet conditions and Fourier’s Theorem

We call a periodic function f piecewise continuous if f is piecewise con-
tinuous on the interval [0, T ] where T is the period of f .

A function is monotonically increasing in an interval [a, b] if

f(t1) ≤ f(t2)

for all t1 and t2 in [a, b] such that t1 ≤ t2. A function is
monotonically decreasing in [a, b] if

f(t1) ≥ f(t2)

for all t1 and t2 in [a, b] such that t1 ≤ t2.

The notions of being strictly increasing and strictly decreasing are de-
fined in exactly the same way as the notions of monotonically increasing and
decreasing functions, with the exception of using the ordering symbols < and
> instead of ≤ and ≥.

A function is monotone in an interval [a, b] if it is either monotonically
increasing or monotonically decreasing in [a, b]. This means that it is im-
possible for f to both increase and decrease in [a, b], Roughly speaking this
means that there are neither local maxima nor minima in [a, b], but strictly
speaking this is not exactly true, as we will see.
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Definition 3.1. A periodic function f satisfies the Dirichlet condi-
tions if

1. f is piecewice continuous and thus bounded.

2. The period interval [d, d + T ] of f can be partitioned into finitely
many successive subintervals such that f is monotone on each of
these subintervals, i.e., monotonically increasing or monotonically
decreasing.

Informally, a periodic function thus satisfies the Dirichlet conditions if it is
piecewise continuous and changes from being monotonically increasing to
monotonically decreasing, or vice versa, only finitely many times.

Recall that a function f has a local maximum f(c) at c if there exists an
interval (c − d, c + d) (where d > 0) around c such that f(c) ≥ f(r) for all
r ∈ (c− d, c+ d). For functions typical in applications, the second condition
of Definition 3.1 above can be replaced by

2.’ f has finitely many local maxima and minima in [d, d+ T ].

However, for example the constant function f(t) = 0 satisfies 2 but not 2’.

It is now possible to prove the Fourier’s theorem:
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Theorem 3.2. If a T -periodic function f satisfies the Dirichlet con-
ditions, then the Fourier series f̂(t) defined by Eqn 6 exists (i.e., the
integrals have defined values), and furthermore, the series f̂(t) converges
such that we have

f̂(t) =


f(t) if f is continous at t

f(t+) + f(t−)

2
if f is discontinous at t .

This is a very powerful theorem, as typical functions relevant for applications
indeed satisfy the Dirichlet conditions. A full proof of Fourier’s theorem is
beyond the scope of this course.

3.1.2 Coefficients of Fourier series

We now justify that the definition of Fourier series given by Equation 6
together with Equations 7 and 8. The point is to show that if there exists any
real number coefficients a0, a1, a2 . . . and b1, b2 . . . such that the trigonometric
series

a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))
converges to f(t), then the coefficients must be defined exactly as given by
Equations 7 and 8. That is, there is no alternative here, so the definition
given by Equations 7 and 8 is forced upon us.

To this end, we need the following integrals. The integrals are proved in
Section 3.1.3.
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Orthogonality integrals:

d+T∫
d

cos(nωt) cos(kωt)dt =

{
0 for n 6= k, n > 0, k ≥ 0.
T
2

for n = k > 0
(9)

d+T∫
d

sin(nωt) sin(kωt)dt =

{
0 for n 6= k
T
2

for n = k > 0
(10)

d+T∫
d

sin(nωt) cos(kωt)dt = 0 (11)

where T = 2π
ω
.

We also need the following integrals that will, likewise, be proved in Section
3.1.3. (The integrals are easy to evaluate by a direct calculation, but we shall
prove the below identities differently.)

d+T∫
d

cos(nωt)dt =

{
0 when n 6= 0

T when n = 0
(12)

d+T∫
d

sin(nωt)dt = 0 (13)

where T = 2π
ω
.
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Now suppose that f satisfies the Dirichlet conditions.2 Let T be the period
of f . Suppose that for all

t ∈ [d, d+ T ],

with the possible exception of a finite number of values of t, we have

f(t) =
a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))
, (14)

where a0, a1, a2, . . . and b1, b2, . . . are some real numbers. We next show that
under the assumption that Equation 14 indeed holds, we necessarily have

1.

an =

d+T∫
d

f(t) cos(nωt) dt (n = 0, 1, 2, . . . )

2.

bn =

d+T∫
d

f(t) sin(nωt) dt (n = 1, 2, . . . ).

In other words, when f(t) converges to the series given on the right hand side
of Equation 14, the constants an and bn must be chosen exactly as dictated
by Equations 7 and 8, and thus the definition of f̂ (given by Equations 6, 7
and 8) could not be done in any other way. There is no alternative here for
us, as there are no other similarly converging Fourier series with alternative
definitions for an and bn. This justifies the definition of an and bn that might
otherwise seem somewhat arbitrary.

Case 1: showing that an = 2
T

d+T∫
d

f(t) cos(nωt) dt (n = 0,1,2, . . . )

Let k be a nonnegative integer. Multiply Equation 14 by cos(kωt) and inte-
grate from d to d+ T . Thus we obtain the following equation:

2We note that there are other, less restrictive constraints that could be assumed here
instead of the Dirichlet conditions, and our argument would still go through.
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d+T∫
d

f(t) cos(kωt) dt

=

d+T∫
d

a0

2
cos(kωt) dt +

∞∑
n=1

(
an

d+T∫
d

cos
(
nωt

)
cos
(
kωt
)
dt

+ bn

d+T∫
d

sin
(
nωt

)
cos
(
kωt
)
dt
)
.

We note that there are infinite sums
∞∑
n=1

gn(t) such that
∫ v
u

(
∞∑
n=1

gn(t))dt cannot

be replaced by
∞∑
n=1

(
∫ v
u
gn(t)dt) in the way we did here. However, it can be

shown that here this exchange is fine. A fully rigorous justification of the

exchange is beyond the level of this course.

Using the orthogonality integrals (Equations 9, 10, 11), and the integral of
Equation 12, we see that
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d+T∫
d

f(t) cos(kωt) dt

=

d+T∫
d

a0

2
cos(kωt) dt

︸ ︷︷ ︸0 if k 6= 0

a0
T
2

if k = 0

+
∞∑
n=1

(
an

d+T∫
d

cos
(
nωt

)
cos
(
kωt
)
dt

︸ ︷︷ ︸
=


0 if k 6= n
T
2

if k = n

(note: n 6= 0 here)

+ bn

d+T∫
d

sin
(
nωt

)
cos
(
kωt
)
dt

︸ ︷︷ ︸
=0

)
.

Therefore
d+T∫
d

f(t) cos(kωt) dt = ak
T

2
,

whence

ak =
2

T

d+T∫
d

f(t) cos(kωt) dt.

Thus

an =
2

T

d+T∫
d

f(t) cos(nωt) dt.

Case 2: showing that bn = 2
T

d+T∫
d

f(t) sin(nωt) dt (n = 1,2, . . . )

Let k ≥ 1. This time we multiply Equation 14 by sin(kωt) and integrate
from d to d+ T , obtaining the following equation:
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d+T∫
d

f(t) sin(kωt) dt

=

d+T∫
d

a0

2
sin(kωt) dt +

∞∑
n=1

(
an

d+T∫
d

cos
(
nωt

)
sin
(
kωt
)
dt

+ bn

d+T∫
d

sin
(
nωt

)
sin
(
kωt
)
dt
)
.

Using the orthogonality integrals (Equations 9, 10, 11) and the integral from
Equation 13, we observe that

d+T∫
d

f(t) sin(kωt) dt

=

d+T∫
d

a0

2
sin(kωt) dt

︸ ︷︷ ︸
=0

+
∞∑
n=1

(
an

d+T∫
d

cos
(
nωt

)
sin
(
kωt
)
dt

︸ ︷︷ ︸
=0

+ bn

d+T∫
d

sin
(
nωt

)
sin
(
kωt
)
dt

︸ ︷︷ ︸0 if n 6= k
T
2

if n = k > 0

)
.

Therefore
d+T∫
d

f(t) sin(kωt) dt = bk
T

2
,

whence

bk =
2

T

d+T∫
d

f(t) sin(kωt) dt.
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Thus

bn =
2

T

d+T∫
d

f(t) sin(nωt) dt.

3.1.3 Orthogonality integrals

In this section we prove the orthogonality integrals from Equations 9, 10 and
11. Before that, we prove Equations 12 and 13.3

We first show that

d+T∫
d

sin(nωt)dt = 0. (15)

where n = 0, 1, 2, . . . and T = 2π
ω
.

If n = 0, this is clear. Thus we assume that n 6= 0. We note that sin(nωt)
has period

2π

nω
=

2π

n2π
T

=
T

n
,

and therefore also T is a period of sin(nωT ), being a multiple of T
n
. Thus

d+T∫
d

sin(nωt)dt

is an integral over a full period of the function sin(nωt). Thus clearly

d+T∫
d

sin(nωt)dt = 0.

3In this section we will not always attempt to use the fastest methods of proving
the integrals we deal with, but instead use some elucidating, longer approaches that are,
nevertheless, reasonably short. We also occasionally repeat some interesting points.
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To see why this is clear, note that sine is an odd function, and integrating
odd functions over a any period gives zero by Equation 1 and Theorem 2.11.
Indeed, recall that Equation 1 stated that integrating an odd function over
a symmetric interval [−c, c] gives zero, while Theorem 2.11 stated that when
integrating a periodic function over a period, it does not matter where we
place the interval of integration. While the period interval [d, d+T ] may not
be symmetric (i.e., of the form [−c, c] ), Theorem 2.11 indeed shows that we
can shift the integration interval.

We then show that

d+T∫
d

cos(nωt)dt =

{
0 when n 6= 0

T when n = 0
(16)

where n = 0, 1, 2, . . . and T = 2π
ω
.

The case with n = 0 is clear, so we assume that n 6= 0. We note that cos(nωt)
has period

2π

nω
=

2π

n2π
T

=
T

n
.

Thus also T is a period of cos(nωT ), being a multiple of T
n
. Therefore

d+T∫
d

cos(nωt)dt

is an integral over a full period of the function cos(nωt) based on the cosine
function. Thus clearly

d+T∫
d

cos(nωt)dt = 0.

(To see why this is clear, note that sin(nωt) and cos(nωt) differ only by a
time shifting factor or phase shift (see Section 2.3.2), so their integrals over
a period are the same, zero.)
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First orthogonality integral

We now calculate the orthogonality integrals given in Equations 9, 10 and
11. We first show that

d+T∫
d

cos
(
nωt

)
cos
(
kωt
)
dt =

{
0 if n 6= k, n > 0, k ≥ 0
T
2

if n = k > 0.
(17)

Assume that n 6= k, n > 0, k ≥ 0. Using the well known trigonometric
identity

cos(a) cos(b) =
1

2
(cos(a+ b) + cos(a− b)),

we see that now

d+T∫
d

cos
(
nωt

)
cos
(
kωt
)
dt

=
1

2

( d+T∫
d

cos
(
nωt+ kωt

)
dt+

d+T∫
d

cos
(
nωt− kωt

)
dt
)

=
1

2

( d+T∫
d

cos
(
(n+ k)ωt

)
dt+

d+T∫
d

cos
(
(n− k)ωt

)
dt
)
. (18)

Now recall that for any positive constant c, the function cos(ct) has a period
2π
c
, so cos

(
(n+ k)ωt

)
has a period

2π

(n+ k)ω
=

2π

(n+ k)2π
T

=
T

n+ k
.

Therefore also
(n+ k)

T

n+ k
= T

is a period of cos
(
(n + k)ωt

)
. We have thus deduced that T is a period of

cos
(
(n+ k)ωt

)
, and we can—with the same argument—show that T is also

a period of cos
(
(n− k)ωt

)
= cos

(
− (n− k)ωt

)
= cos

(
(k−n)ωt

)
. Therefore
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the integrals

d+T∫
d

cos
(
(n+ k)ωt

)
dt and

d+T∫
d

cos
(
(n− k)ωt

)
from Line 18 are integrals over a full period. Since these functions based on
the cosine function, the integrals must be equal to zero. That is, we have

d+T∫
d

cos
(
(n+ k)ωt

)
dt = 0 when n 6= k, n > 0, k ≥ 0. (19)

and
d+T∫
d

cos
(
(n− k)ωt

)
= 0 when n 6= k, n > 0, k ≥ 0. (20)

Thus we have shown that the integral of Equation 17 is indeed zero when
n 6= k, n > 0, k ≥ 0.

We then prove the integral in Equation 17 in the case where n = k > 0.
Again using the trigonometric identity

cos(a) cos(b) =
1

2
(cos(a+ b) + cos(a− b)),

we have

d+T∫
d

cos
(
nωt

)
cos
(
kωt
)
dt =

d+T∫
d

cos2
(
nωt

)
dt (recall n = k)

=
1

2

( d+T∫
d

cos
(
nωt+ nωt

)
dt+

d+T∫
d

cos
(
nωt− nωt

)
dt
)

=
1

2

( d+T∫
d

cos
(
2nωt

)
dt+

d+T∫
d

1 dt
)

=
1

2

( d+T∫
d

cos
(
2nωt

)
dt
)

+
T

2
.
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Now,
d+T∫
d

cos
(
2nωt

)
dt = 0, as cos

(
2nωt

)
has period

2π

2nω
=

2π

2n2π
T

=
T

2n

and therefore also T is a period of cos
(
2nωt

)
. We have thus now shown that

d+T∫
d

cos2
(
nωt

)
dt =

T

2

and thereby proved that Equation 17 indeed holds.
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Second orthogonality integral

We then prove the second orthogonality integral given by Equation 10, that
is, we will prove that

d+T∫
d

sin(nωt) sin(kωt)dt =

{
0 for n 6= k
T
2

for n = k > 0 .
(21)

First, if n or k is zero, we clearly have
∫ d+T

d
sin(nωt) sin(kωt)dt = 0. Thus

we only have to deal with the cases where n > 0 and k > 0.

We first assume that n 6= k. By the trigonometric identity

sin(a) sin(b) =
1

2
(− cos(a+ b) + cos(a− b)),

we have

d+T∫
d

sin
(
nωt

)
sin
(
kωt
)
dt

=
1

2

(
−

d+T∫
d

cos
(
nωt+ kωt

)
dt+

d+T∫
d

cos
(
nωt− kωt

)
dt
)

=
1

2

(
−

d+T∫
d

cos
(
(n+ k)ωt

)
dt+

d+T∫
d

cos
(
(n− k)ωt

)
dt
)
. (22)

By Equations 19 and 20, we see that both of these integrals are zero. Thus
we have now covered the first case of Equation 21. To cover the second case,
we assume that n = k > 0.

Once more using the trigonometric identity

sin(a) sin(b) =
1

2
(− cos(a+ b) + cos(a− b)),
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we have

d+T∫
d

sin2
(
nωt

)
dt

=
1

2

(
−

d+T∫
d

cos
(
nωt+ nωt

)
dt+

d+T∫
d

cos
(
nωt− nωt

)
dt
)

=
1

2

(
−

d+T∫
d

cos
(
2nωt

)
dt+

d+T∫
d

1 dt
)

= −1

2

d+T∫
d

cos
(
2nωt

)
dt+

T

2
.

We know that the integral
d+T∫
d

cos
(
2nωt

)
dt is zero (as cos

(
2nωt

)
has period

2π
2nω

= 2π
2n 2π

T

= T
2n

and thus also T is a period of cos
(
2nωt

)
). We have thereby

now shown that
d+T∫
d

sin2
(
nωt

)
dt =

T

2

whence Equation 21 indeed holds.
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Third orthogonality integral

Here we prove that

d+T∫
d

sin(nωt) cos(kωt)dt = 0.

If n is zero, this is clear. If k is zero (but n is not), this is an integral of
sin(nωt) over T , which is a period of sin(nωt), as 2π

nω
= 2π

n 2π
T

= T
n
is a period.

Thus we then assume that neither n nor k is zero.

Now, arguing once again the same way as we have done many times above, we
see that T is a period of both sin(nωt) and cos(kωt). (Indeed, 2π

nω
= 2π

n 2π
T

= T
n

is a period of sin(nωt) and 2π
kω

= 2π
k 2π
T

= T
k
a period of cos(kωt), and thereby

T must be a period of both of these functions, being a multiple of both T
n

and T
k
.)

Since T is a period of both of these functions, it is a period of their product
sin(nωt) cos(kωt). As

sin(nωt) cos(kωt)

is a product of an odd and an even function, it is an odd function, and thus

d+T∫
d

sin(nωt) cos(kωt)dt

is an integral of an odd function over one period T . Thus we must have

d+T∫
d

sin(nωt) cos(kωt)dt = 0.

We have now covered all the orthogonality integrals.
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3.2 Fourier series, first examples

Example 3.3. Let f be the function defined such that

1.

f(t) =

{
0 if − π ≤ t < 0

1 if 0 ≤ t < π.

2.
f(t+ 2π) = f(t) for all t.

Let us find the Fourier series f̂ of this function.

By Eqn 6, the Fourier series is

f̂(t) =
a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))
where

an =
2

T

d+T∫
d

f(t) cos(nωt) dt (n = 0, 1, 2, . . . )

and

bn =
2

T

d+T∫
d

f(t) sin(nωt) dt (n = 1, 2, . . . ).

The function f has period 2π, so we put T = 2π and recall that ω =
2π

T
, so

ω = 1. The value of d can be chosen freely; we choose d = −π.
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Therefore

an =
1

π

π∫
−π

f(t) cos(nt) dt =
1

π

( 0∫
−π

0 · cos(nt) dt +

π∫
0

1 · cos(nt) dt
)

=
1

π

π∫
0

1 · cos(nt) dt =



1

π

∣∣∣∣ 0

−π

1

n
sin(nt) = 0− 0 = 0 for n 6= 0

1

π

∣∣∣∣ 0

−π
t = 1 for n = 0

and

bn =
1

π

π∫
−π

f(t) sin(nt) dt

=
1

π

( 0∫
−π

0 · sin(nt) dt +

π∫
0

1 · sin(nt)dt
)

=
1

π

π∫
0

sin(nt) dt

= − 1

π

∣∣∣∣ π

0

1

n
cos(nt)

=− 1

nπ

(
(−1)n − 1

)

=


0 for even n

2

nπ
for odd n .
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Therefore the Fourier series of f is

a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))

=
1

2
+
∞∑
n=1

(
0 cos

(
nωt

)
+ bn sin

(
nωt

))

=
1

2
+
∞∑
n=1

bn sin
(
nt
)

(recall that ω = 1)

=
1

2
+

∑
n=1,3,5,...

2

nπ
sin
(
nt
)

=
1

2
+

2

π

( sin
(
t
)

1
+

sin
(
3t
)

3
+

sin
(
5t
)

5
+ . . .

)
.

This concludes Example 3.3.

Example 3.4. It would be desirable that the Fourier series of the cosine
function was the cosine function itself. In this example we verify that this
is indeed the case. More exactly, we will show that the Fourier series of
cos(mωt) is cos(mωt). Here m denotes a positive integer.

To obtain the Fourier series, let us first find a0. We get
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a0 =
2

T

∫ T

0

cos
(
mωt

)
dt

=



2

T

∣∣∣∣ T

0

1

mω
sin
(
mωt

)
if m 6= 0

2

T

∣∣∣∣ T

0

t if m = 0

=

{
0 if m 6= 0

2 if m = 0.

However, we defined that m is a positive integer in our example, so we
conclude that a0 = 0.

Now recall that cos(a) cos(b) = 1
2
(cos(a+ b) + cos(a− b)). Using this, we see

that the coefficients an and bn for n ≥ 1 are

an =
2

T

∫ T

0

cos
(
mωt

)
cos
(
nωt

)
dt

=
1

T

∫ T

0

(
cos
(
(m+ n)ωt

)
+ cos

(
(m− n)ωt

))
dt

=



1

T

∣∣∣∣ T

0

(
1

(m+ n)ω
sin
(
(m+ n)ωt

)
+

1

(m− n)ω
sin
(
(m− n)ωt

))
when m 6= n

1

T

∣∣∣∣ T

0

(
1

2mω
sin
(
2mωt

)
+ t

)
when m = n

=

{
0 when m 6= n

1 when m = n.

and
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bn =
2

T

∫ T/2

−T/2
cos
(
mωt

)
sin
(
nωt

)︸ ︷︷ ︸
an odd function

dt

= 0.

Thus the Fourier series of cos(mωt) is

f̂
(
t
)

=
a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))

= cos
(
mωt

)
,

as desired.

Example 3.5. This example is similar to the previous one, albeit even easier.
We will show that the Fourier series of a constant function f(t) = c is the
constant c ∈ R itself. This is a very useful result, as it can be directly used
for obtaining a Fourier series ĝ(t) of a function g(t) = h(t)+c from an already
known Fourier series ĥ(t) of h(t). This means obtaining the Fourier series of
a function obtained by vertically shifting some function whose Fourier series
we already know. We shall discuss how ĝ(t) is obtained from ĥ(t) in Section
3.4, Example 3.7.

Now let us verify that the Fourier series of f(t) = c is c. The constant
function f has every possible period, so we choose to work with the period
T = 2π. Thus ω = 2π

T
= 1. We have

a0 =
2

T

∫ 2π

0

c dt =
2

2π

(
2πc
)

= 2c,

an =
2

T

∫ 2π

0

c cos(nt)dt = 0 for n ≥ 1,

bn =
2

T

∫ 2π

0

c sin(nt)dt = 0 for n ≥ 1.
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Therefore the Fourier series is is

f̂
(
t
)

=
a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))

=
2c

2
= c,

as expected.
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3.3 Exponential form of Fourier series

In this section we discuss the exponential form of Fourier series. It is more
compact than the trigonometric form and it is therefore sometimes advanta-
geous to use it. Especially calculations can often become easier. However,
we must make use of the complex numbers when dealing with this represen-
tation.

Recall that

ejx = cos(x) + j sin(x), (23)

where j stands for the standard complex square root of −1. Thus, recalling
that

cos(−x) = cos(x) and sin(−x) = − sin(x),

we have

cos(x) =
ejx + e−jx

2
(24)

sin(x) =
ejx − e−jx

2j
. (25)

Therefore we can write
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a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))

=
a0

2
+
∞∑
n=1

(
an

(ejnωt + e−jnωt

2

)
+ bn

(ejnωt − e−jnωt
2j

))

=
a0

2
+
∞∑
n=1

( an
2
ejnωt +

an
2
e−jnωt +

bn
2j
ejnωt − bn

2j
e−jnωt

)

=
a0

2
+
∞∑
n=1

( an
2
ejnωt +

an
2
e−jnωt − j bn

2
ejnωt + j

bn
2
e−jnωt

)
(recall

1

j
= −j)

=
a0

2
+
∞∑
n=1

(
(
an − jbn

2
)ejnωt + (

an + jbn
2

)e−jnωt
)

= c0 +
∞∑
n=1

(
cne

jnωt + c−ne
−jnωt ) (Here we simply define new symbols c0, cn, c−n.)

=
∞∑

n=−∞

cne
jnωt

where

c0 =
a0

2

cn =
an − jbn

2
for n = 1, 2, 3 . . .

cn =
a−n + jb−n

2
for n = −1,−2,−3 . . .

We have thus shown that

f̂(t) =
∞∑

n=−∞

cne
jnωt, (26)
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or alternatively,

f̂(t) = c0 +
∞∑
n=1

(
cne

jnωt + c−ne
−jnωt ). (27)

We also note that, when n ≥ 1, we have

d+T∫
d

f(t)e−jnωt dt =

d+T∫
d

f(t)
(

cos(−nωt) + j sin(−nωt)
)
dt

=

d+T∫
d

f(t) cos(nωt) dt − j

d+T∫
d

f(t) sin(nωt) dt

=
T

2
(an − jbn) (by Eqns 7 and 8)

= Tcn (since n ≥ 1; see the definition of cn on the previous page.)

Furthermore, when n ≤ −1, then, writing k = −n, we have
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d+T∫
d

f(t)e−jnωt dt =

d+T∫
d

f(t)
(

cos(−nωt) + j sin(−nωt)
)
dt

=

d+T∫
d

f(t) cos(kωt) dt + j

d+T∫
d

f(t) sin(kωt) dt

=
T

2
(ak + jbk) (by Eqns 7 and 8 and since k ≥ 1)

=
T

2
(a−n + jb−n) (since −n = k ≥ 1)

= Tcn (since n ≤ 1).

Finally, when n = 0, then

d+T∫
d

f(t)e−jnωt dt =

d+T∫
d

f(t)ej·0·ωt dt

=

d+T∫
d

f(t) dt

=
T

2
a0

= Tc0 .
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Therefore we have shown that for all n (positive, negative, zero), we have

d+T∫
d

f(t)e−jnωt = Tcn

and thus

cn =
1

T

d+T∫
d

f(t)e−jnωt.

Combining this with Equation 26, we have

f̂(t) =
∞∑

n=−∞

cne
jnωt (28)

cn =
1

T

d+T∫
d

f(t)e−jnωt. (29)

Alternatively, using Equation 27, we have

f̂(t) = c0 +
∞∑
n=1

(
cne

jnωt + c−ne
−jnωt ) (30)

cn =
1

T

d+T∫
d

f(t)e−jnωt. (31)

51



We have thus identified the exponential forms of Fourier series.

For converting Fourier series from the exponential form to the trigonometric
form, it is useful to remember the above deduced identities:

c0 =
a0

2
(32)

cn =
an − jbn

2
for n = 1, 2, 3 . . . (33)

cn =
a−n + jb−n

2
for n = −1,−2,−3 . . . (34)

Notice that c−n is the complex conjugate of cn.
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3.4 Linearity of Fourier series

In this section we prove that if a function f can be represented as a linear
combination of functions g and h, then the Fourier series f̂ is representable
as a linear combination of ĝ and ĥ. This if formally captured by the following
theorem.

Theorem 3.6. Let a and b be constants, and let f, g and h be T -periodic
functions. Suppose that

f(t) = ag(t) + bh(t).

Then
f̂(t) = aĝ(t) + bĥ(t).

Proof. We write

1. f̂(t) =
∞∑

n=−∞

cne
jnωt

2. ĝ(t) =
∞∑

n=−∞

αne
jnωt

3. ĥ(t) =
∞∑

n=−∞

βne
jnωt.
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By Equation 29, we know that

cn =
1

T

d+T∫
d

f(t)e−jnωtdt

αn =
1

T

d+T∫
d

g(t)e−jnωtdt

βn =
1

T

d+T∫
d

h(t)e−jnωtdt.

Therefore

cn =
1

T

∫ d+T

d

f(t)e−jnωt dt

=
1

T

∫ d+T

d

(
ag(t) + bh(t)

)
e−jnωt dt

= a
1

T

∫ d+T

d

g
(
t
)
e−jnωt dt+ b

1

T

∫ d+T

d

h
(
t
)
e−jnωt dt

= aαn + bβn.

Thus

f̂(t) =
∞∑

n=−∞

cne
jnωt =

∞∑
n=−∞

(aαn + bβn)ejnωt

= a
∞∑

n=−∞

αne
jnωt + b

∞∑
n=−∞

βne
jnωt

= aĝ
(
t
)

+ bĥ
(
t
)
.

This concludes the proof.
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Example 3.7. Theorem 3.6 can be very useful for obtaining Fourier series
of functions from known Fourier series of other functions. We now present
an example of this.

Let us find the Fourier series of

1.

g(t) =

{
−1

2
if − π ≤ t < 0

1
2

if 0 ≤ t < π.

2.
g(t+ 2π) = g(t) for all t.

Now, this function g is similar to the block wave f whose Fourier series we
found in Example 3.3. We have g(t) = f(t) − 1

2
for all t, so g obtained by

shifting f downwards by 1
2
units. The Fourier series of f is

f̂(t) =
1

2
+

2

π

( sin
(
t
)

1
+

sin
(
3t
)

3
+

sin
(
5t
)

5
+ . . .

)

and the Fourier series of −1
2

is −1
2

(by example 3.5). Thus, by Theorem 3.6,
the Fourier series of g(t) = f(t)− 1

2
is ĝ(t) = f̂(t)− 1

2
. That is, we have

ĝ(t) =
2

π

( sin
(
t
)

1
+

sin
(
3t
)

3
+

sin
(
5t
)

5
+ . . .

)
.

Thus we managed to find the Fourier series ĝ(t) very easily by simply using
the linearity property of Fourier series given by Theorem 3.6.

Example 3.8. Let us find the Fourier series of

1.

h(t) =

{
−1

2
if − π ≤ t < 0

0 if 0 ≤ t < π.
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2.
h(t+ 2π) = h(t) for all t.

Again we start from the Fourier series of the block wave f of Example 3.3
i.e., the series

f̂(t) =
1

2
+

2

π

( sin
(
t
)

1
+

sin
(
3t
)

3
+

sin
(
5t
)

5
+ . . .

)
.

This time we have h(t) = 1
2
f(t) − 1

2
for all t. Thus we obtain h from f by

first scaling f vertically and then shifting the result downwards by 1
2
units.

By linearity, we have ĥ(t) = 1
2
f̂(t)− 1

2
. Therefore

ĥ(t) = −1

4
+

1

π

( sin
(
t
)

1
+

sin
(
3t
)

3
+

sin
(
5t
)

5
+ . . .

)
.

Again finding the Fourier series was very easy using the linearity property.

Linearity is indeed a very useful property, especially when finding Fourier
series of functions that are vertically shifted (as in Example 3.7) or scaled
(as in Example 3.8).

Example 3.9. Let us verify that the Fourier series of 5 + 1
3

cos(4t) is the
function 5 + 1

3
cos(4t) itself. In Example 3.4, we found out that the Fourier

series of cos(mωt) is cos(mωt), so the Fourier series of cos(4t) is cos(4t).
By linearity, the Fourier series of 1

3
cos(4t) is therefore 1

3
cos(4t) itself. In

Example 3.5, we indeed verified that the Fourier series of a constant c ∈ R
is the constant c itself, so the Fourier series of 5 is 5. Therefore, by linearity,
the Fourier series of 5 + 1

3
cos(4t) is 5 + 1

3
cos(4t).
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3.4.1 Fourier series of time shifted and time scaled functions

Above we saw that by linearity, the amplitude scaled function sf(t) (where
s ∈ R) has the Fourier series sf̂(t) and the vertically shifted function f(t)+s
the Fourier series f̂(t) + s. We now investigate Fourier series of time scaled
functions f(st) (where s > 0 is a constant in R) as well as time shifted
functions f(t+ s) (where s ∈ R).

Let f be a T -periodic function with circular frequency ω. Define the function
g such that

g(t) = f(st)

where s > 0. We have

g(t+
T

s
) = f(s(t+

T

s
)) = f(st+ T ) = f(st) = g(t),

so T
s
is a period of g. The related circular frequency of g is 2π

T/s
= 2πs

T
= ωs.

Call
T ′ =

T

s
and ω′ = ωs.

The exponential Fourier series for g(t) is

ĝ(t) =
∞∑

n=−∞

c′ne
jnω′t,

with the coefficients c′n given by

c′n =
1

T ′

∫ T ′

0

g(t)e−jnω
′t dt =

s

T

∫ T/s

0

f(st)e−jnωst dt.

Let us perform a change of variables by setting x = st. Now dx = sdt, and
the new lower limit of integration is 0 and the upper one T . Therefore, letting
cn denote the coefficients in the exponential Fourier series of f , we have

c′n =
s

T

∫ T

0

f(x)e−jnωx
1

s
dx =

1

T

∫ T

0

f(x)e−jnωx dx = cn.
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Thus c′n = cn, so time scaling does not change the coefficients cn, while it
does change the exponential coefficients from ejnωt to ejnω′t = ejnωst, as we
saw above. Altogether, we have

ĝ(t) =
∞∑

n=−∞

cne
jnωst = f̂(st)

for g(t) = f(st), with each cn denoting a coefficient of f̂ .

Let us then investigate how time shifting affects Fourier series. Consider the
function

g(t) = f(t+ s).

Note that s can be negative, so this can be a time shift to the right as well
as left.

The period and the circular frequency do not change in a time shift, so we
can let T and ω denote the period and circular frequency of both f and g.
Let cn denote the coefficients of the Fourier series f̂ of f , so we have

f̂(t) =
∞∑

n=−∞

cne
jnωt.

Let us find the Fourier series

ĝ(t) =
∞∑

n=−∞

c′ne
jnωt.

The coefficients c′n are given by

c′n =
1

T

∫ T

0

g(t)e−jnωt dt =
1

T

∫ T

0

f(t+ s)e−jnωt dt.

We make a change of variables by setting x = t + s. Then dx = dt, and the
lower limit of integration becomes s and the upper one T + s. Therefore we
have
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c′n =
1

T

∫ T+s

s

f(x)e−jnω(x−s) dx = ejnωs
1

T

∫ T+s

s

f(x)e−jnωx dx = ejnωscn.

Therefore

ĝ(t) =
∞∑

n=−∞

ejnωscne
jnωt.

Note that thereby we have

ĝ(t) =
∞∑

n=−∞

ejnωscne
jnωt =

∞∑
n=−∞

cne
jnω(t+s) = f̂(t+ s).

That is,
ĝ(t) = f̂(t+ s).

Altogether, we have

ĝ(t) =
∞∑

n=−∞

ejnωscne
jnωt =

∞∑
n=−∞

cne
jnω(t+s) = f̂(s+ t)

for g(t) =f(t+ s), with each cn denoting a coefficient of f̂ .

Let us also find the trigonometric form of ĝ. Therefore we let

f̂(t) =
a0

2
+
∞∑
n=1

(
an cos(nωt) + bn sin(nωt)

)
and aim to find what a′n and b′n are in

ĝ(t) =
a′0
2

+
∞∑
n=1

(
a′n cos(nωt) + b′n sin(nωt)

)
.
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By the analysis of the exponential series, we have

ĝ(t) = f̂(t+ s) =
a0

2
+
∞∑
n=1

(
an cos

(
nω(t+ s)

)
+ bn sin

(
nω(t+ s)

))
.

Using the trigonometric identities

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b),

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b),

we thus conclude, by minor rearranging, that

ĝ(t) =
a0

2
+
∞∑
n=1

((
cos(nωs)an + sin(nωs)bn

)︸ ︷︷ ︸
= a′n

cos(nωt)

+
(
cos(nωs)bn − sin(nωs)an

)︸ ︷︷ ︸
= b′n

sin
(
nωt)

)
.

Therefore time shift modifies the coefficients an and bn of the Fourier series
to the above form. Summing up, we have

ĝ(t) =
a0

2
+
∞∑
n=1

((
cos(nωs)an + sin(nωs)bn

)
cos(nωt)

+
(
cos(nωs)bn − sin(nωs)an

)
sin
(
nωt)

)
for g(t) = f(t+ s), with an and bn denoting coefficients of f̂ .
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3.5 Convergence of Fourier series

Here we look at convergence properties of Fourier series. The related the-
ory is deep, with many open problems, so we can only scratch the surface
of the matter instead of giving a complete characterization of convergence
behaviour. The point is to understand some of the most important issues
related to convergence of typical Fourier series.

The accuracy of the approximation of a function f by a truncated Fourier
series, i.e., a finite partial sum, can be approximated by understanding the
rate (or speed) of convergence of the Fourier series f̂ . The rate of convergence
bears a close relation to how fast the sequence of terms

(an cos(nωt) + bn sin(nωt))

in the series converges as n tends to infinity. Convergence of this sequence,
however, does of course not suffice to guarantee convergence of the series.

As the sine and cosine functions get their values from [−1, 1], it is many cases
quite reasonable that the convergence rate of the coefficients an and bn is of
central importance in determining how fast the overall convergence of the
terms (an cos(nωt) + bn sin(nωt)) and the series occurs. Understanding how
the coefficients behave indeed often helps in proofs of convergence of Fourier
series.

Let us define some concepts that will help us analyze convergence rates of
general sequences. Let R≥0 be the set of nonnegative real numbers. Consider
two functions f : N→ R≥0 and g : N→ R≥0, i.e., f and g are functions with
domain N that get their values from R≥0. Thereby one can think of f and g
as sequences

x0, x1, x2, . . .

of nonnegative reals.

We write

f ∈ O
(
g
)
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if there exists some m ∈ N and some nonnegative real number c such that
we have

f(n) ≤ c · g(n) for all n > m.

Intuitively, this means that from some large enough number m onwards, the
function f always gets values that are at most c · g. Very informally, this
means that g in some sense dominates f , at least from some point onwards,
as we approach infinity.

Example 3.10. Consider the sequence

( 5

n

)∞
n=1

=
5

1
,

5

2
,

5

3
,

5

4
,

5

5
,

5

6
, . . .

Define f : N→ R≥0 according to this sequence by setting

f(n) =


0 if n = 0

5

n
if n ≥ 1.

Define g : N→ R≥0 similarly according to the sequence

( 1

n

)∞
n=1

=
1

1
,

1

2
,

1

3
,

1

4
,

1

5
. . .

by setting

g(n) =


0 if n = 0

1

n
if n ≥ 1.

Now, we clearly have

g ∈ O(f).
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We can here simply write this as follows:

( 1

n

)∞
n=1
∈ O

( ( 5

n

)∞
n=1

)
.

However, we also have ( 5

n

)∞
n=1
∈ O

( ( 1

n

)∞
n=1

)
.

It is also clear that we have( 5

n2

)∞
n=1
∈ O

( ( 1

n

)∞
n=1

)
,

while ( 1

n

)∞
n=1

6∈ O
( ( 5

n2

)∞
n=1

)
.

Thereby we can intuitively think that ( 1
n

)∞n=1 converges fundamentally slower
than ( 5

n2 )∞n=1.

Different Fourier series have quite different convergence properties. Roughly,
the smoother the function is, the faster the rate of convergence. The follow-
ing theorem formalizes parts of this intuition in relation to convergence of
the Fourier coefficients an and bn.
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Theorem 3.11. Let f be a T -periodic function having the Fourier series

f̂(t) =
a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))
.

a) If the function f is piecewise continuous but not continuous, then
|an| ∈ O( 1

n
) and |bn| ∈ O( 1

n
).

b) If f is continuous but not continuously differentiable, then we have
|an| ∈ O( 1

n2 ) and |bn| ∈ O( 1
n2 ).

c) If f is k ≥ 1 times continuously differentiable but the k+1st deriva-
tive is discontinuous, then |an| ∈ O(1/nk+2) and |bn| ∈ O(1/nk+2).

The proof the theorem is out of the scope of this course.

Example 3.12. The piecewise continuous block wave function of Example
3.3 has jump discontinuities. We showed that its Fourier series is

1

2
+

∑
n=1,3,5,...

2

nπ
sin
(
nt
)
,

so |an| is zero for n ≥ 1 while

|bn| = bn =


0 for even n

2

nπ
for odd n .

This is clearly in accordance with the item a) of Theorem 3.11, as

2

nπ
∈ O(

1

n
).

Now consider the triangle wave defined such that
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g(t) =


t if 0 ≤ t < 1

2

−t+ 1 if 1
2
≤ t < 3

2

t− 2 if 3
2
≤ t < 2,

g(t+ 2) = g(t).

This function can be shown to have the Fourier series

8

π2

∑
n=1,3,5,...

(−1)(n−1)/2

n2
sin
(
nπt
)
,

with an = 0 for all n and thus

bn =
8

π2n2

{
(−1)(n−1)/2 for odd n
0 for even n.

The triangle wave is continuous but not continuously differentiable, and
therefore the fact that

|bn| ≤
8

π2n2

is clearly in accordance with item b) of Theorem 3.11. Indeed,

8

π2n2
∈ O(

1

n2
)

clearly holds.
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3.5.1 The Gibbs phenomenon

In this section we discuss the Gibbs phenomenon, which concerns the be-
haviour of partial sums of a Fourier series f̂ around discontinuities of f .
Formal proofs of the results in the section are out of the scope of the course.

Recall the block wave function

1.

g(t) =

{
−1

2
if − π ≤ t < 0

1
2

if 0 ≤ t < π.

2.
g(t+ 2π) = g(t) for all t

from Example 3.7. We found its Fourier series to be

ĝ(t) =
2

π

( sin
(
t
)

1
+

sin
(
3t
)

3
+

sin
(
5t
)

5
+ . . .

)
.

Let ĝ(N) denote the partial sum of ĝ that includes all terms up to the terms
with coefficients aN and bN . Figure 4 shows the partial sums ĝ(9) and ĝ(19)

of ĝ.
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Figure 4: The graphs of the partial sums ĝ(9) and ĝ(19) of the block wave g
from Example 3.7. The dashed line is at y = 1

2 . The “horns” just before and
after the discontinuity points are the overshoots and undershoots due to the Gibbs
phenomenon.
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We notice from Figure 4 that the graphs of ĝ(9) of ĝ(19) have a clear overshoot
and undershoot close to each point of discontinuity t = nπ of the function
g. See Figure 5 for further details on how partial sums g(N) behave close to
discontinuities.

Figure 5: The graphs of the partial sums ĝ(5), ĝ(11) and ĝ(25) in the same figure.
Each curve has an overshoot just before the discontinuity of g at t = π. The
overshoot of ĝ(5) (the green curve) is quite far from t = π, the overshoot of ĝ(11)

(blue curve) somewhat closer, and that of ĝ(11) (black curve) the closest. The
overshoots get closer and closer to the discontinuity point t = π as we consider
g(N) for larger and larger values of N . However, the height of the overshoot does
not go to zero as N increases. Instead, the height of the overshoot converges
to about 9% of the gap g(π−) − g(π+) = 1 between the one-sided limits; see
the upright double arrow at the top right corner of the figure. There are similar
undershoots associated with the one-sided limits at y = −0.5. The behaviour is
similar for a comprehensive class of periodic functions with jump discontinuities,
with the same 9% limit errors at jump discontinuity points. This phenomenon
related to overshoots and undershoots at jump discontinuities is known as the
Gibbs phenomenon.

The overshoot/undershoot phenomenon shown in the figures is common to a
comprehensive class of periodic functions with points of jump discontinuity.
It is called the Gibbs phenomenon.
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We describe the Gibbs phenomenon informally before giving a formal defi-
nition. Consider a periodic function f that satisfies the Dirichlet conditions
and is piecewise contiuously differentiable. Being piecewise continuously dif-
ferentiable means here that the period of f can be divided into finitely many
intervals such that in those intervals, with the possible exception of the end-
points, the function f is differentiable and the derivative is continuous.

Suppose f has a jump discontinuity at t0. Close to t0, all partial sums f̂(N)

get a value that significantly overestimates/underestimates the value of f .
There is either a peak (overestimation, overshoot) or a pit (underestimation,
undershoot). The graph of f̂(N) has an overshoot close to t0 in the vicinity of
the greater (meaning greater in the y-direction) one-sided limit of f . Sym-
metrically, the graph of f̂(N) has an undershoot in the vicinity of the smaller
one-sided limit of f . (See Figures 4 and 5 for examples.)

So the partial sums vertically overestimate the value of f where the one-sided
limit is anyway higher up in the y-direction and underestimate the value of
f where the one-sided limit is lower (in the y-direction).

The points where the undershoot and overshoot are located get horizontally
closer and closer to the discontinuity t0 as we consider sums f̂(N) with greater
and greater values of N (cf. Figure 5). However, the size (height) of the
overshoot error does not tend to zero as N → ∞. The same holds for
undershoots. Thus the error between the values of f̂(N) and f does not tend
to zero as N increases. But the location of the error shifts closer and closer
to the discontinuity point. Because the location of the error shifts,

lim
N→∞

f̂N(t) = f(t)

still holds for all points t where f is continuous.

We then consider the Gibbs phenomenon formally. First, let us define a
constant CWG, called the Wilbraham-Gibbs constant, as follows:

CWG =

∫ π

0

sin
(
t
)

t
dt ≈ 1.851937052.
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Let us also define

C =
1

π
CWG −

1

2
=

1

π

∫ π

0

sin
(
t
)

t
dt− 1

2
≈ 0.0894898722.

Now, to understand the Gibbs phenomenon in a sufficiently general case
(from the point of view of applications), consider a function f with period
T satisfying the Dirichlet conditions. Suppose f is piecewise continuously
differentiable.

Suppose there exists a point of discontinuity t0 where f(t+0 )− f(t−0 ) = d > 0,
so there is a gap of size d at t0 between the one-sided limits.

Then we have

lim
N→∞

f̂(N)(t0 +
T

2N
) = f(t+0 ) + d · C

lim
N→∞

f̂(N)(t0 −
T

2N
) = f(t−0 )− d · C.

Furthermore, for all sequences tN such that tN → t0 as N → t0, we have

lim
N→∞

f̂(N)(tN) ≤ f(t+0 ) + d · C

lim
N→∞

f̂(N)(tN) ≥ f(t−0 )− d · C

when the limit on the left hand side of the two equations exist. These four
equations imply that close to the discontinuity t0, the partial sums f̂(N) with
very large N will overestimate the vertical gap between the one-sided limits
f(t+0 ) and f(t−0 ) by the factor 2C, i.e., by about 18%. Both sides of the
discontinuity contribute about 9% to this error. The first two equations
show that such an error will appear around t0 in large enough partial sums.
The last two equations show that no greater error appears around t0 in large
enough partial sums.
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Here we assumed that f(t+0 ) > f(t−0 ). In the case f(t−0 ) > f(t+0 ), the analysis
is done similarly, in a symmetric way. This time there is an overshoot just
before f(t−0 ) and an undershoot right after f(t+0 ).
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3.6 Periodic extensions of functions

In this section we consider approximating nonperiodic functions over finite
intervals. Before that, we prove the following proposition that is hardly
surprising by now.

Proposition 3.13. Let f be an even function with period T and with Fourier
series

f̂(t) =
a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))
.

where ω = 2π
T
. Then bn = 0 for all n, so in fact

f̂(t) =
a0

2
+
∞∑
n=1

an cos
(
nωt

)
.

Similarly, let h be an odd function with period T and with Fourier series

ĥ(t) =
a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))
.

where ω = 2π
T
. Then an = 0 for all n, so we have

ĥ(t) =
∞∑
n=1

+bn sin
(
nωt

)
.

Proof. Let us first show that the terms bn in the Fourier expansion of f are
all zero. We have

bn =
2

T

d+T∫
d

f(t) sin(nωt) dt.

By Theorem 2.11, we can shift the interval of integration, whence

bn =
2

T

T/2∫
−T/2

f(t) sin(nωt) dt.
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As a product of an even and an odd function, f(t) sin(nωt) is odd, so this is
an integral of an odd function over a symmetric interval, so indeed bn = 0.

Let us then show that the terms an are zero for all n in the Fourier series of
h. We have

an =
2

T

d+T∫
d

h(t) cos(nωt) dt.

Again by Theorem 2.11, we can shift the interval of integration, whence

an =
2

T

T/2∫
−T/2

h(t) cos(nωt) dt.

Now, as h is odd, h(t) cos(nωt) is odd (including the special case where
n = 0). Thus this is an integral of an odd function over a symmetric interval.
Thus an = 0.

Fourier series of the form

f̂(t) =
a0

2
+
∞∑
n=1

an cos
(
nωt

)
are called cosine series expansions, and Fourier series of the form

f̂(t) =
∞∑
n=1

nn sin
(
nωt

)
are sine series expansions. Thereby Fourier series of even functions are
cosine series expansions, while Fourier series of odd functions are sine series
expansions.

We are now ready to investigate the issue of approximating nonperiodic func-
tions with Fourier series over intervals of finite length.
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Consider a possibly nonperiodic function f . Suppose we are interested mainly
in the behaviour of the function inside an interval (0, T ). Consider the fol-
lowing questions.

1. Is it still possible to define a useful Fourier series expansion for f some-
how, even though f is not necessarily periodic?

2. If yes, is there some unique, best way of doing this?

The answer to the first question is yes. Since we are mainly interested in the
behaviour of f inside the period (0, T ), we can define a new function g that
behaves like f on (0, T ) but is forced to be periodic. There are many natural
ways of doing this, so the answer to the second question is no. However, the
different ways have different pros and cons, so it is good news that we can
find several Fourier series expansions that approximate f over (0, T ).

Case 1. Basic periodic extensions

Define a function g(t) as follows.

1. g(t) = f(t) for all t ∈ (0, T ).

2. g(t+ T ) = g(t) for all t ∈ T .

Now g is clearly periodic and agrees with f over (0, T ). As long as g is regular
enough, for example due to satisfying the Dirichlet conditions, we can find a
Fourier series for g that approximates f at least over (0, T ). However, there
are alternative approaches that achieve a similar effect. We next consider
two of those.

Case 2. Even periodic extensions

Define a function g(t) as follows.

g
(
t
)

=

{
f
(
t
)

t ∈
[
0, T

)
,

f
(
− t
)

t ∈
(
− T, 0

)
,

g
(
t+ 2T

)
= g
(
t
)
.
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Now g is periodic with period 2T , and again g agrees with f over (0, T ). As
g is even, the Fourier series of g is a cosine series expansion, i.e., a series of
the form

ĝ
(
t
)

=
a0

2
+
∞∑
n=1

an cos
(
nωt

)
.

Case 2. Odd periodic extensions

Define a function g(t) as follows.

g
(
t
)

=

{
f
(
t
)

t ∈
[
0, T

)
,

−f
(
− t
)

t ∈
(
− T, 0

)
,

g
(
t+ 2T

)
= g
(
t
)
.

The function g is a periodic function with period 2T , and g agrees with f
over (0, T ). As now g is an odd function, the Fourier series of g is of the form

ĝ
(
t
)

=
∞∑
n=1

bn sin
(
nωt

)
,

that is, ĝ is a sine series expansion.

The basic, odd and even periodic extensions are the most common extensions
for approximating a nonperiodic function over a period with finite length.
Variants of these are easy to design.
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3.7 A further form for Fourier series

In this section we present yet another form for Fourier series. We know (cf.
Equations 32, 33, 34) that the coefficients cn of the exponential series relate
to the coefficients an and bn of the trigonometric series as follows.

c0 =
a0

2

cn =
an − jbn

2
for n = 1, 2, 3 . . .

cn =
a−n + jb−n

2
for n = −1,−2,−3 . . .

Note indeed that c−n is the complex conjugate of cn. We have

∣∣cn∣∣ =
1

2

√
a2
n + b2

n =
∣∣c−n∣∣ (35)

and

arg
(
cn
)

= − arg
(
c−n
)
.

We write arg(cn) = θn. Thus we have

cn =
∣∣cn∣∣ejθn and c−n =

∣∣cn∣∣e−jθn .
Thereby we find the following new form for Fourier series:
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f̂
(
t
)

= c0 +
∞∑
n=1

(
cne

jnωt + c−ne
−jnωt

)

= c0 +
∞∑
n=1

(∣∣cn∣∣ejθnejnωt +
∣∣cn∣∣e−jθne−jnωt) (36)

= c0 +
∞∑
n=1

∣∣cn∣∣ (ej(nωt+θn) + e−j
(
nωt+θn

))

= c0 +
∞∑
n=1

∣∣cn∣∣2 cos (nωt+ θn) .

Thus we have

f̂
(
t
)

= c0 +
∞∑
n=1

2
∣∣cn∣∣ cos (nωt+ θn) , (37)

where θn = arg
(
cn
)
.

The following table summarizes the forms of Fourier series we have identified.
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f̂
(
t
)

=
a0

2
+
∞∑
n=1

(
an cos

(
nωt

)
+ bn sin

(
nωt

))

=
∞∑

n=−∞

cne
jnωt

= c0 +
∞∑
n=1

(
cne

jnωt + c−ne
−jnωt )

= c0 +
∞∑
n=1

2
∣∣cn∣∣ cos (nωt+ θn) with (θn = arg

(
cn
)
)

where

an =
2

T

d+T∫
d

f(t) cos(nωt) dt

bn =
2

T

d+T∫
d

f(t) sin(nωt) dt

cn =
1

T

d+T∫
d

f(t)e−jnωt dt

and

cn =
an − jbn

2
for n ≥ 0, cn =

a−n + jb−n
2

for n < 0

2
∣∣cn∣∣ =

√
a2
n + b2

n .
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The representation

f̂
(
t
)

=
a0

2
+

∞∑
n=1

√
a2
n + b2

n cos (nωt+ θn)

of the Fourier series of f gives one way of understanding the principal infor-
mal intuition behind Fourier analysis. If you think of the terms cos (nωt+ θn)
as basis vectors representing higher and higher frequencies, then the ampli-
tudes

√
a2
n + b2

n represent the amount how much that frequency is present
in the function f . Thus the Fourier series f̂ can be considered to be the
representation of f in terms of basis vectors, specifying for each circular
frequency nω the scalar

√
a2
n + b2

n that multiplies the related basis vector
cos (nωt+ θn). This is entirely analogous to the constructions in elementary
linear algebra where we can decompose a complicated vector v into a repre-
sentation in terms of simple basis vectors, thereby obtaining a better picture
of how v is built. Vectors given explicitly in terms of basis vectors are easy to
understand and manipulate, so such decompositions are highly advantageous
indeed. We shall put this informal idea into use in the coming sections.
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3.8 Parseval’s theorem

In this section we look at some results concening average values of squared
periodic functions (f(t))2. There are several ways of motivating the study
of average values of functions (f(t))2 from the point of view of applications,
and we will briefly consider this issue below. The main result of the section is
Parseval’s theorem which states that the average of (f(t))2 can be obtained
by summing all numbers |cn|2. This has several important interpretations
related to applications; we will very briefly discuss at those as well. However,
our focus here is strictly the mathematical background theory.

Let H(x) : R → R be a function, and consider a finite interval [a, b], where
b > a. Recall that the average value or mean value of f in [a, b] is defined to
be

1

b− a

b∫
a

H(t) dt.

In applications, the mean of a function often does not quite provide us with
the information we are after due to polarity issues, i.e., the interplay of
positive and negative values.

For example, if H(x) = sin(x) and K(x) = 2 sin(x) represent spatial, one-
dimensional waves in space, their mean value in the interval [−π, π] represents
the mean displacement from y = 0, and this mean value is zero for both func-
tions, despite the clear amplitude difference. This reason for the mean values
to be the same is that both functions get both positive and negative values.
To counter these polarity effects, it is often more informative to study, e.g.,
the mean square values. For the waves H(x) = sin(x) and K(x) = 2 sin(x),
the mean square values in [−π, π] are the mean values of (H(x))2 and (K(x))2

in [−π, π]. These values can easily be calculated to be 1/2 and 2 respectively.
Now there is a clear difference between the two values. We note that an alter-
native would be to consider the mean absolute values, i.e., the mean values of
|H(x)| and |K(x)|. However, mean square values are usually favoured since it
is typically easier to work with squared functions than absolute values. How-
ever, both options—squares and absolute values—often work perfectly fine.
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Square and absolute values do give different numerical values, of course, but
this is no problem as long as the theory being built is interpreted correctly,
taking the particularties of squares/absolute values carefully into account.

Let H(t) : R → R be a function and T > 0. The mean value of H over an
interval [d, d+ T ] is given by

1

T

d+T∫
d

H(t) dt.

In many applications, it is often useful to calculate the mean of a product
f(t)g(t) of some functions f and g, which is of course given by

1

T

d+T∫
d

f(t)g(t) dt.

If f and g are T -periodic functions, the following result is frequently useful.

Theorem 3.14 (The multiplication theorem). Let f(t) and g(t) be T -
periodic functions with Fourier series

f̂
(
t
)

=
∞∑

n=−∞

cne
jnωt and ĝ

(
t
)

=
∞∑

n=−∞

γne
jnωt.

where ω = 2π
T
. Suppose f(t), g(t) and the product f(t)g(t) satisfy the Dirichlet

conditions. Then

1

T

∫ d+T

d

f
(
t
)
g
(
t
)
dt =

∞∑
n=−∞

cnγ
∗
n =

∞∑
n=−∞

c∗nγn.
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Proof. We have g(t) = ĝ(t) for all t, with the possible exception of isolated
points. Thus the integrals of g and ĝ over any interval are the same. Thus
we have

1

T

∫ d+T

d

f
(
t
)
g
(
t
)
dt =

1

T

∫ d+T

d

f
(
t
)
ĝ
(
t
)
dt

=
1

T

∫ d+T

d

f
(
t
)( ∞∑

n=−∞

γne
jnωt

)
dt

=
∞∑

n=−∞

(
1

T

∫ d+T

d

f
(
t
)
ejnωt dt

)
γn

=
∞∑

n=−∞

c−nγn =
∞∑

n=−∞

c∗nγn,

where we used the property that c−n = c∗n. We still need to prove that

∞∑
n=−∞

cnγ
∗
n =

∞∑
n=−∞

c∗nγn.

This is immediate, as the two sums have exactly the same terms because
c−n = c∗n and γ−n = γ∗n.

We need one more definition before we present Parseval’s Theorem. The
average power of a T -periodic function f is defined as

1

T

d+T∫
d

(f(t))2 dt.

We often use the notation
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1

T

d+T∫
d

f 2(t) dt.

for this.4

Theorem 3.15 (Parseval’s theorem). Consider a T -periodic function f(t)
and suppose f(t) and (f(t))2 satisfy the Dirchlet conditions. Let

f̂
(
t
)

=
∞∑

n=−∞

cne
jnωt, where ω =

2π

T
,

be the Fourier series of f(t). Then we have

1

T

∫ d+T

d

f 2
(
t
)
dt =

∞∑
n=−∞

∣∣cn∣∣2 (38)

This formula is known as Parseval’s equation or Parseval’s identity.

Proof. The result is an immediate consequence of the multiplication theorem.

Since

cn =
an − jbn

2
, c−n =

an + jbn
2

and c0 =
a0

2
,

we have
4It is of course not necessary to always interpret the average power here to relate to

the actual notion of power in, say, signal processing or physics. The integral represents
radically different measures in different applications.
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∣∣cn∣∣2 =
∣∣c−n∣∣2 = cnc−n =

an − jbn
2

· an + jbn
2

=
a2
n + b2

n

4
.

Thus we have the following form for Parseval’s identity:

1

T

∫ d+T

d

f 2
(
t
)
dt =

∞∑
n=−∞

∣∣cn∣∣2 =
a2

0

4
+
∞∑
n=1

a2
n + b2

n

2
. (39)

Equation 38 can be interpreted in many ways. To give one interpretation,
consider Equation 39 which is just an alternative formulation of 38. Recall
the following form for Fourier series we deduced earlier:

f̂
(
t
)

= c0 +
∞∑
n=1

2
∣∣cn∣∣ cos (nωt+ θn) . (40)

Recall also Equation 35 which states that

|cn| =
1

2

√
a2
n + b2

n.

Thus, recalling that c0 = a0
2
, we have

f̂
(
t
)

=
a0

2
+

∞∑
n=1

√
a2
n + b2

n cos (nωt+ θn) . (41)

Thereby the term a20
4

+
∑∞

n=1
a2n+b2n

2
of Equation 39 is a simply a sum of the

squared amplitudes (divided by 2) that multiply the harmonic basis compo-
nents cos (nωt+ θn) in the Fourier series given by Equation 41.5

5For n = 0, the harmonic basis component can be defined to be 1√
2
(while for n ≥ 1

the harmonic basis components are indeed cos (nωt+ θn)). Then we have a0

2 = a0√
2
· 1√

2

and we thereby obtain the term a0

4 in Equation 39 by squaring the “amplitude” a0√
2
and

dividing by 2—exactly the same way as for the terms in the cases where n ≥ 1. The lack
of elegance in the case for n = 0 has no deeper signifigance: it could be tamed by adjusting
the background definitions somewhat differently.
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Thus the equation

1

T

∫ d+T

d

f 2
(
t
)
dt =

a2
0

4
+
∞∑
n=1

a2
n + b2

n

2

can be interpreted to state that the average power of f can be decomposed
into a sum of components that represent the squared amplitudes (divided by
2) that multiply the harmonic basis components in a Fourier series of f . It
may be informative to point out that in applications, energy and power are
indeed typically proportional to squared amplitudes.

Whatever the case, it is always possible (and fundamental) to interpret Par-
seval’s theorem mathematically, as a way of decomposing the mean of the
square of f into a sum of components relating to the amplitudes of a Fourier
series of f . Mean squares are indeed met everywhere due to the fact that
they can nicely deal with polarity issues, as described earlier.

The point of Parseval’s theorem is not so much to compute the average of
f 2(t) using (halved squares of) the amplitudes

√
a2
n + b2

n, as this can be done
by direct integration. It is more about realizing that indeed, the mean value of
f 2(t) decomposes into parts related to multipliers

√
a2
n + b2

n, each multiplier
being associated with a single harmonic term

√
a2
n + b2

n cos(nωt + θn) with
its own individual circular frequency nω. Thus the average of f 2(t) can be
considered to decompose into individual amplitude-based components a2n+b2n

2

for different circular frequencies.

This thinking leads to the definition of an amplitude spectrum. We de-
fine the amplitude spectrum of a Fourier series to be the two-ways infinite
sequence

. . . |c−3|, |c−2|, |c−1|, |c0|, |c1|, |c2|, |c3| . . .

We note that here we write terms |cn| instead of 2|cn| which was the amplitude
in Equation 40. Recalling that |c−n| = |cn|, we also note that the definition
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of amplitude spectra is somewhat redundant, as it would not be necessary
to write the negative part . . . |c−3|, |c−2|, |c−1| at all, since all the related
information is encoded in the nonnegative part |c0|, |c1|, |c2|, |c2| . . . How-
ever, it is natural to think about amplitude spectra as encoding information
in the following Equation

f̂(t) = c0 +
∞∑
n=1

(∣∣cn∣∣ejθnejnωt +
∣∣c−n∣∣e−jθne−jnωt) (42)

which follows directly from Equation 36 as |cn| = |c−n|.

We also define the notion of a phase spectrum of a Fourier series, which is
given by the sequence

· · · − θ3, −θ2, −θ1, θ0, θ1, θ2, θ3 . . .

where each θn is typically chosen from [−π, π]. Again there is redundancy
in the definition, as the terms before θ0 are simply the negated values of the
corresponding terms after θ0. Note indeed that the terms −θn and |c−n| are
associated with the multipliers |c−n

∣∣e−jθn in Equation 42 and the terms θn
and |cn| with the multipliers |cn

∣∣ejθn .
Amplitude spectra are usually plotted by drawing for each n ∈ Z a vertical
line from (nω, 0) to (nω, |cn|) with a small x at the point (nω, |cn|). Similarly,
phase spectra are plotted by drawing a line from (nω, 0) to (nω, n|n|θ|n|) with
a small x at (nω, n|n|θ|n|). Of course in practice we only plot a finite number
of values of spectra.
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4 Discrete Fourier transform

4.1 Defining the discrete Fourier Transform

In a typical application based on an experiment, we only have data points—
measured at different time instants—with no clear idea about the underlying
function producing the data points. We do not even necessarily know if
the related function f is periodic. Suppose our data points—or samples—
are values of f for inputs from an interval [0, T ]. Suppose we wish to find
approximations of some of the Fourier coefficients cn occurring in a Fourier
series that corresponds to f at least over [0, T ]. One way forward is as follows.

We suppose the function f is after all periodic with the interval [0, T ] being
a single period. (Even if the function was not periodic, we would ultimately
get an approximation that works somehow for at least [0, T ].)

Suppose that our data points are evenly distributed over
[
0, T

]
so that the

values of the function f (i.e., the measured data points or samples) are given
at the following time instants:

0,
T

N
,
2T

N
, . . . ,

(
N − 1

)
T

N
.

Thus the data points divide
[
0, T

]
it into N equal size subintervals of length

T

N
.

The coefficients of the exponential Fourier series are given by

cn =
1

T

∫ T

0

f
(
t
)
e−jnωt dt.
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We approximate this integral by the Riemann sum with the values of the
function evaluated at the left boundary of each subinterval. (Recall that
Riemann sums are the basis of the limit process via which integrals arise,
i.e., the limit process of approximating the area determined by an integral
with rectangular shapes. Recap the notion of Riemann sums if necessary.)

The lengths of the subintervals are

∆t =
T

N
.

Thus the Riemann sum approximation of

cn =
1

T

∫ T

0

f
(
t
)
e−jnωt dt.

is given by

N−1∑
k=0

f

(
kT

N

)
e−jnω

kT
N
T

N
,

which we denote by dn, that is,

cn ≈ dn =
1

T

N−1∑
k=0

f

(
kT

N

)
e−jnω

kT
N
T

N
=

1

N

N−1∑
k=0

f

(
kT

N

)
e−jnω

kT
N .

In order to simplify notation, we define

gk = f

(
kT

N

)
for k = 0, 1, 2, . . . , N − 1.

Replacing ω by 2π
T
, we obtain

dn =
1

N

N−1∑
k=0

gke
−jnk 2π

N for n = 0, 1, 2, . . . , N − 1.
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We define

Gn =
N−1∑
k=0

gke
−jnk 2π

N for n = 0, 1, 2, . . . , N − 1,

whence dn =
Gn

N
.

Thus the sequence

(g0, g1, g2, . . . , gN−1) =
(
gk
)N−1

k=0

based on the samples of the function f gives rise to the sequence

(G0, G1, G2, . . . , GN−1) =
(
Gn

)N−1

n=0
,

which we call the discrete Fourier transform (DFT) of (g0, g1, g2, . . . , gN−1):

The discrete Fourier transform (DFT) converts a sequence
(g0, g1, g2, . . . , gN−1) of samples to the sequence (G0, G1, G2, . . . , GN−1)
such that

Gn =
N−1∑
k=0

gke
−jnk 2π

N for n = 0, 1, 2, . . . , N − 1. (43)

Recalling that dn =
Gn

N
, we see that DFT gives a sequence of terms that—if

divided by the number N of samples—approximate the Fourier coefficients
cn.

Since DFT is directly related to the coefficients of the Fourier series of the
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function f we started with, DFT gives us useful information about the func-
tion. (Indeed, if we knew all the coefficients cn, we would know a lot about
the function.)

A useful way of thinking about the DFT is that it changes perspective from
function values (measured at time-points) to Fourier coefficients (associated
with different circular frequencies). Thus we are transferring information
from the time domain to a frequency domain.

4.1.1 Defining the inverse discrete Fourier transform

We next construct an inverse to the discrete Fourier transform DFT. The
resulting operation will be called the inverse discrete Fourier transform or
IDFT.

Having the sequence
(
Gn

)N−1

n=0
, we want to find the sequence

(
gk
)N−1

k=0
of

samples we started with. We begin by the following observation:

N−1∑
n=0

Gne
jnk 2π

N =
N−1∑
n=0

(N−1∑
m=0

gme
−jnm 2π

N

)
ejnk

2π
N

=
N−1∑
m=0

gm

(N−1∑
n=0

e−jn
2π
N

(m−k)

)

=
N−1∑
m=0

gm

( N−1∑
n=0

(
e−j2π

(m−k)
N

)n )
. (44)

We then notice that the indices m and k satisfy the inequality

0 ≤
∣∣m− k∣∣ ≤ N − 1

which implies that (m−k)
N

is an integer only if we have m − k = 0. When
m = k, then
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gm

N−1∑
n=0

(
e−j

2π
N

(m−k)
)n

= gk

N−1∑
n=0

1 = gkN. (45)

If m 6= k, then m−k
N

is not an integer, and thus, with the help of the formula
for geometric series, we have

gm

N−1∑
n=0

(
e−j

2π
N

(m−k)︸ ︷︷ ︸
= q 6= 1

)n
= gm

N−1∑
n=0

qn = gm
1− qN

1− q
=

1− 1

1− q
= 0

where we indeed used the fact that any geometric sum
n=m∑
n=0

rn with r 6= 1

can be calculated from

n=m∑
n=0

rn =
1− rm+1

1− r
.

Thereby we have

gm

N−1∑
n=0

(
e−j

2π
N

(m−k)
)n

= 0 for m 6= k

and (repeating Equation 45), we also have

gm

N−1∑
n=0

(
e−j

2π
N

(m−k)
)n

= gkN for m = k.

Therefore, continuing Equation 44, we have
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N−1∑
n=0

Gne
jnk 2π

N =
N−1∑
m=0

gm

(N−1∑
n=0

(
e−j

2π
N

(m−k)
)n)

= 0 + 0 + · · ·+Ngk + 0 + · · ·+ 0 = Ngk.

Thus

1

N

N−1∑
n=0

Gne
jnk 2π

N = gk.

This gives rise to the inverse discrete Fourier transform IFDT:

The inverse discrete Fourier transform IDFT converts a sequence of
(G0, G1, G2, . . . , GN−1) complex numbers to a sequence (g0, g1, g2, . . . , gN−1)
such that

gk =
1

N

N−1∑
n=0

Gne
jnk 2π

N for k = 0, 1, 2, . . . , N − 1. (46)

To contrast IDFT, we repeat the definition of DFT:

The discrete Fourier transform DFT converts (g0, g1, g2, . . . , gN−1) to
(G0, G1, G2, . . . , GN−1) such that

Gn =
N−1∑
k=0

gke
−jnk 2π

N for n = 0, 1, 2, . . . , N − 1.
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4.2 Properties of the discrete Fourier transform

Periodicity

The discrete Fourier transform is periodic in the sense that for all n ∈ Z,

Gn+N =
N−1∑
k=0

gke
−j(n+N)k 2π

N =
N−1∑
k=0

gke
−jnk 2π

N e−jk2π︸ ︷︷ ︸
=1

= Gn (47)

implying that

Gn+N = Gn for all n.

Note that we are here operating outside the index set {0, . . . N − 1} as the
subindex n+N of Gn+N is not necessarily in {0, . . . N − 1}. Thus Equation
47 shows that when operating globally in this way, DFT becomes periodic.
We can of course define an infinite set of samples from the basic sequence
(g0, . . . , gN−1) by letting gk+N = gk for all integers k.

Symmetry

The discrete Fourier transform is symmetric in the sense that for all n ∈ Z,

GN−n = G∗n for all n ∈ Z.

Indeed,

GN−n =
N−1∑
k=0

gke
−jk(N−n) 2π

N =
N−1∑
k=0

gke
jnk 2π

N e−jnN
2π
N =

N−1∑
k=0

gke
jnk 2π

N = G∗n,

whence we also have
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∣∣GN−n
∣∣ =

∣∣Gn

∣∣ and arg
(
GN−n

)
= − arg

(
Gn

)
.

By periodicity, we moreover have

G−n = GN−n = G∗n.
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5 Fourier transform

A Fourier series

f̂(t) =
∞∑

n=−∞

cne
jnωt (48)

provides a discrete, frequency-based representation of f . What we mean by
this is that Equation 48 essentially defines a function F (to be specified below)
that can be seen as an alternative representation for f , and the domain of F
is a set of circular frequencies.

Let us indeed specify what F looks like. Let S = {nω |n ∈ Z } be a set of
circular frequencies. Let F : S → C be a function such that F (nω) = cn for
each input nω ∈ S. We have

f̂(t) =
∞∑

n=−∞

F (nω)ejnωt. (49)

Therefore the function F gives a frequency domain representation of the
function f because as long as we have F , we can compute f̂(t) using Equation
49.

As F contains essentially the same information as Equation 48 (since we can
construct 48 based on F and vice versa), a Fourier series can be regarded
as a conversion of a function f from a time-domain function to a frequency
domain function.

If we drop the assumption of periodicity of f , we can still define a function
analogous to the function F above. The function in question is obtained as
a result of the Fourier transform of f . As opposed to the set S which we
defined above to have a discrete set of circular frequencies, the domain of the
function that the Fourier transform produces has as its domain essentially
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the continuous set R of all possible frequencies. The formal definitions are
given in the next section.

5.1 Definition of Fourier transform

In this section we give the formal definitions of the Fourier integral and
Fourier transform. However, before that, we first discuss the so-called Dirich-
let conditions the for Fourier integrals.

5.1.1 Dirichlet conditions for Fourier integrals

Consider a function h(t) that is bounded in every finite interval, that is, for
all (a, b), there exists some real numbers m and M such that m ≤ h(t) ≤M
for all t ∈ (a, b). The improper integral (of the first kind) of a function
h(t) from −∞ to ∞ is defined so that

∞∫
−∞

h(t) dt = lim
b→−∞

a∫
b

h(t) dt + lim
c→∞

c∫
a

h(t) dt.

Here a can be any constant, for example zero. Now, note that for example

∞∫
−∞

t dt = lim
b→−∞

a∫
b

t dt + lim
c→∞

c∫
a

t dt = −∞+∞,

so
∞∫
−∞

t dt does not exist (as neither of the integrals in the sum exist due to

being −∞ and ∞ respectively).

The Cauchy principal value of h(t) from −∞ to ∞ is defined as
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CPV ∞
−∞
(
h(t)

)
= lim

b→∞

b∫
−b

h(t) dt.

We note that CPV ∞
−∞(t) = 0, so the Cauchy principal value exists for the

function h(t) = t.

We have thus demostrated that there exist functions bounded in every finite
interval for which the Cauchy principal value CPV exists but the improper
integral does not. However, it can be shown that if the improper integral
exists for some function f bounded in all finite intervals, then also the CPV
exists, and furthermore, the two values are equal.

Often the notation
∞∫
−∞

h(t) dt stands for CPV, so one must be careful whether

this notation means the improper integral or CPV. We will indeed be careful

to make the distinction below, even though it often makes no difference

whatsoever.

We are now ready to give a definition which provides sufficient conditions for
existence of Fourier integrals, as we shall see later on; Fourier integrals are
defined and discussed in the next section. The so-called Dirichlet conditions
for Fourier integrals are defined as follows:6

6In the definition, a “finite interval [a, b]” simply means an interval [a, b] with a, b ∈ R
and a < b. This excludes infinite intervals such as, for example, [0,∞].
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Definition 5.1 (Dirichlet conditions for Fourier integrals). A function f
satisfies the Dirichlet conditions for Fourier integrals if the following
conditions are met.

1. For every finite interval [a, b],

(a) f is piecewise continuous in f ,

(b) [a, b] can be partitioned into finitely many successive intervals
such that f is monotone on each of the intervals.

2. the improper integral ∫ ∞
−∞

∣∣f(t)∣∣ dt
converges, i.e., it has a finite value.
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5.1.2 Defining Fourier transforms

In this section we sketch a derivation that results in a formula defining the
Fourier transform and its inverse.

Consider a function f that is not necessarily periodic or continuous. Let g
denote the symmetric T -periodic extension of f defined such that

g(t) = f(t) if t ∈ (−T
2
,
T

2
]

g(t+ T ) = t(t).

Thus g agrees with f when −T
2
< t ≤ T

2
and is forced to be T -periodic with

the period interval (−T
2
, T

2
] copied to the regions outside (−T

2
, T

2
].

The exponential Fourier series of g is given by

ĝ
(
t
)

=
∞∑

n=−∞

cne
jnω0t,

where

cn =
1

T

∫ T
2

−T
2

g
(
u
)
e−jnω0u du

=
1

T

∫ T
2

−T
2

f
(
u
)
e−jnω0u du

and
ω0 =

2π

T
.

Now, in the alternative Fourier series (see Equation 37) based on cosines, we
have

ĝ(t) = c0 +
∞∑
n=1

2
∣∣cn∣∣ cos (nω0t+ θn) ,
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so the difference between the circular frequencies of the subsequent
harmonic components (or harmonic terms) 2

∣∣cn∣∣ cos (nω0t+ θn) and
2
∣∣cn+1

∣∣ cos ((n+ 1)ω0t+ θn+1) is

(n+ 1)ω0 − nω0 = ω0 =
2π

T
.

Thus it is natural to define ∆ω = ω0.

We have

ĝ
(
t
)

=
∞∑

n=−∞

cne
jnω0t

=
∞∑

n=−∞

(
1

T

∫ T
2

−T
2

f
(
u
)
e−jnω0u du

)
ejnω0t

=
∞∑

n=−∞

(∫ T
2

−T
2

f
(
u
)
e−jnω0u du

)
ejnω0t

2π

T

1

2π

=
1

2π

∞∑
n=−∞

ejnω0t

(∫ T
2

−T
2

f
(
u
)
e−jnω0u du

)
∆ω.

We define

GT

(
ω
)

=

∫ T
2

−T
2

f
(
u
)
e−jωu du.

Thus

ĝ
(
t
)

=
1

2π

∞∑
n=−∞

ejnω0tGT

(
nω0

)
∆ω.

We let T → ∞ whence 2π
T

= ω0 = ∆ω → 0. Therefore, noting that we are
summing from −∞ to ∞, it follows quite directly that
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lim
ω0=∆ω→0, T→∞

ĝ
(
t
)

= lim
ω0=∆ω→0, T→∞

1

2π

∞∑
n=−∞

ejnω0tGT

(
nω0

)
∆ω

=
1

2π

∫ ∞
−∞

ejωt
(∫ ∞
−∞

f
(
u
)
e−jωu du

)
dω

where the integrals are CPVs.

Therefore, since f(t) = ĝ(t) when t is a point of continuity, we have

f
(
t
)

=
1

2π

∫ ∞
−∞

ejωt
(∫ ∞

−∞
f
(
u
)
e−jωu du

)
dω (50)

if f is continuous at t. Note that f is continuous everywhere except for at
isolated points. There is a jump discontinuity at the isolated points t where
f is not continuous, and there the integral can be shown to be equal to the
average of the one-sided limits f(t+) and f(t−).

The double integral

1

2π

∫ ∞
−∞

ejωt
(∫ ∞

−∞
f
(
u
)
e−jωu du

)
dω

is called the Fourier integral of f (and we indeed interpret the integrals as
CPVs).

Equation 50 giving the Fourier integral should be compared to Equation 26
which gives the exponential form of Fourier series. Equation 50 can be seen
as a continous variant Equation 26.
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We will next define the Fourier transform and its inverse. The definitions
are constructed directly based on Equation 50. The Fourier transform is
analogous to the equation

cn =
1

T

∫ d+T

d

f(t)e−jnωtdt

familiar from Fourier series, and the inverse Fourier transform is a reformu-
lation of the Fourier integral in terms of the Fourier transform.

The Fourier transform of f is defined as follows:

F
{
f
(
t
)}

= F
{
f
}(
ω
)

= F
(
ω
)

=

∫ ∞
−∞

f
(
u
)
e−jωu du (51)

where the integral is a CPV. The formula of the Fourier integral gives the
definition of the inverse Fourier transform:

F−1
{
F
(
ω
)}

= F−1
{
F
}(
t
)

= f
(
t
)

=
1

2π

∫ ∞
−∞

F
(
ω
)
ejωt dω (52)

where the integral is CPV.

The following theorem holds:

Theorem 5.2. Suppose f satisfies the Dirichlet conditions for Fourier inte-
grals. The Fourier integral converges to f at every point where f is contin-
uous. The Fourier integral converges to the average of one-sided limits of f
at every point of discontinuity.

The derivation of the formula for the inverse Fourier transform—a trans-
form that outputs f(t)—was carried out above. However, a full proof of the
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theorem involving a careful analysis of the Dirichlet conditions for Fourier
integrals is beyond the scope of this course and thus omitted.

Example 5.3. Let us find the Fourier transform of the function

f : f
(
t
)

= H
(
t
)
e−at

where a > 0 and H is the Heaviside function (see Section 2.7).

Let us first check that the function f satisfies the Dirichlet conditions for
Fourier integrals. Firstly, f has only a single discontinuity and clearly every
finite interval where f is continuous is monotone. Secondly, the condition
involving the improper integral

∫∞
−∞

∣∣f(t)∣∣ dt is also satisfied:

∫ ∞
−∞

∣∣f(t)∣∣ dt = lim
b→∞

∫ b

0

e−at dt

= lim
b→∞

(
−1

a
e−ab +

1

a
e0
)

=
1

a
,

so all the Dirichlet conditions are satisfied. Therefore the Fourier transform
exists. It is calculated as follows:

F
(
ω
)

=

∫ ∞
−∞

f
(
u
)
e−jωu du =

∫ ∞
0

e−aue−jωu du

= lim
b→∞

∣∣∣∣ b
0

−1

a+ jω
e−u
(
a+jω

)

= lim
b→∞

−1

a+ jω

(
e−bae−jbω − e0

)

=
1

a+ jω
.

Thus the Fourier transform of f is the function F (ω) = 1
a+jω

.
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It is worth noting that the second requirement of the Dirichlet conditions,
namely, that the improper integral∫ ∞

−∞

∣∣f(t)∣∣ dt
converges, is very restrictive. Many frequently occurring functions do not
satisfy it. Examples include, e.g., polynomials (including the constant
functions other than y = 0) and trigonometric functions. However, in
practical applications, functions (considered to represent, e.g., signals)
are typically finite, meaning that they do not continue to the positive or
negative infinity. Then the integral converges.
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5.2 Spectra of non-periodic functions

Recall the notions of amplitude spectra and phase spectra from the end of
Section 3.8. Spectra provided a complete specification of Fourier series, as
they contain enough information for constructing a related Fourier series (as
long as we have a given value of ω) simply by plugging them into, e.g., the
formula

c0 +
∞∑
n=1

2
∣∣cn∣∣ cos (nωt+ θn) where θn = arg

(
cn
)
for all n = 0, 1, 2, . . .

Thus spectra can be seen as a representation of the function f(t). We now
define the analogous notions of spectra for non-periodic functions. These
spectra can be plotted, as we will see, analogously to the way the discrete
amplitude spectra and phase spectra were, this time resulting in continuous
functions.

Now, if F (ω) is a function resulting in from a Fourier transform of some
function f , then it is complex valued and we have

F
(
ω
)

=
∣∣F(ω)∣∣ej arg

(
F (ω)
)
.

The functions
∣∣F(ω)∣∣ and arg

(
F (ω)

)
are, respectively, the amplitude spec-

trum and phase spectrum of the function f such that F
{
f
(
t
)}

= F (ω
)
.

While F takes reals as inputs and outputs complex numbers, the functions∣∣F(ω)∣∣ and arg
(
F (ω)

)
simply map reals to reals. Thus they can be plotted

like any function g : R→ R.

Example 5.4. Recall from above that

F
{
H
(
t
)
e−at

}(
ω
)

= F
(
ω
)

=
1

a+ jω
=

a− jω
a2 + ω2

.

Letting a = 3, and recalling that | 1
z
| = 1

|z|
for complex numbers, we get
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F
(
ω
)

=
3

32 + ω2
− ω

32 + ω2
j

=
1√

32 + ω2
e j(− arctan(ω/3)),

so the amplitude spectrum |F (ω)| is 1
32+ω2 and the phase spectrum arg(F (ω))

is − arctan(ω/3). These two functions are ordinary real-valued functions of
a real variable and thereby easy to plot.

It is worth stressing that |F (ω)| and arg(F (ω)) are representations of f(t)
as frequency domain functions, the function f(t) itself being a time domain
function. Thus the Fourier transform and inverse Fourier transforms allow
us to change perspectives between the time domain and frequency domain
when analysing f .
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5.3 Properties of Fourier transforms

In this section we investigate properties of the Fourier transform. We let

F
{
f
(
t
)}(

ω
)

= F
(
ω
)
and F

{
g
(
t
)}(

ω
)

= G
(
ω
)
with t, ω ∈ R.

We also let a, b ∈ C.

Linearity

We have

F
{
af
(
t
)

+ bg
(
t
)}(

ω
)

=

∫ ∞
−∞

(
af
(
u
)

+ bg
(
u
))
e−jωu du

= a

∫ ∞
−∞

f
(
u
)
e−jωu du+ b

∫ ∞
−∞

g
(
u
)
e−jωu du

= aF
(
ω
)

+ bG
(
ω
)
.

Therefore

F
{
af
(
t
)

+ bg
(
t
)}(

ω
)

= aF
(
ω
)

+ bG
(
ω
)
.

Scaling

Let c 6= 0 and d > 0 be real numbers. Recalling the definition of the signum
function sgn(t) from Example 2.9, we have
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1

|c|
F

(
ω

c

)
=

1

|c|

∫ ∞
−∞

f
(
y
)
e−j

ω
c
y dy

= lim
d→∞

1

|c|

∫ d

−d
f
(
y
)
e−j

ω
c
y dy

= lim
d→∞

sgn(c)

∫ d

−d
f
(
y
)
e−j

ω
c
y 1

c
dy

= lim
d→∞

sgn(c)

∫ |cd|
−|cd|

f
(
y
)
e−j

ω
c
y 1

c
dy

= lim
d→∞

∫ cd

−cd
f
(
y
)
e−j

ω
c
y 1

c
dy

= lim
d→∞

∫ d

−d
f
(
cu
)
e−jωu du (change of variables with y = cu)

=

∫ ∞
−∞

f
(
cu
)
e−jωu du

= F{f(cu)}.

Therefore we have

F
{
f
(
ct
)}(

ω
)

=
1

|c|
F

(
ω

c

)
c 6= 0.
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In particular, by substituting c = −1, we observe that

F
{
f
(
− t
)}(

ω
)

= F
(
− ω

)
.

Transforms of derivatives

Suppose—or course—that f satisfies the Dirichlet conditions for Fourier in-
tegrals, and suppose also that f is differentiable and the Dirichlet condi-
tions for Fourier integrals also hold for f ′. Furthermore, suppose also that
limt→∞ f(t) = limt→∞ f(−t) = 0. Then we have

F
{
f ′
(
t
)}(

ω
)

= jωF
(
ω
)
.

We justify the property as follows.

F
{
f ′
(
t
)}(

ω
)

=

∫ ∞
−∞

f ′
(
u
)
e−jωu du

= lim
d→∞

∫ d

−d
f ′
(
u
)
e−jωu du

= lim
d→∞

( ∣∣∣∣ d
−d
f
(
u
)
e−jωu −

(
− jω

) ∫ d

−d
f
(
u
)
e−jωu du

)

where we integrated by parts. Now, since we assumed that we have
limt→∞ f(t) = limt→∞ f(−t) = 0, the term∣∣∣∣ d

−d
f
(
u
)
e−jωu = f

(
d
)
e−jωd − f

(
− d
)
ejωd
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goes to zero as d→∞. Therefore

F
{
f ′
(
t
)}(

ω
)

= jωF
(
ω
)
,

as required.

Assume that the Dirichlet conditions for Fourier integrals hold for f
and its derivatives f (k) for k = 1, 2, . . . , n. Assume also that f (k) for
k = 0, 1, . . . ,

(
n − 1

)
(where f (0) = f) are differentiable and satisfy

limt→∞ f
(k)(t) = limt→∞ f

(k)(−t) = 0. Applying repeatedly the above rea-
soning gives

F
{
f (n)

(
t
)} (

ω
)

=
(
jω
)n
F
(
ω
)
.

Shifting properties

The standard shifting properties of Fourier transforms are the following:

F
{
f
(
t− a

)}(
ω
)

= e−jaωF
(
ω
) (

time shift
)
,

F
{
ejbtf

(
t
)}(

ω
)

= F
(
ω − b

) (
frequency shift

)
.

The time shift property is sometimes called the time delay property, and
the frequency shift property the modulation property.

The time shift formula can be derived as follows:
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F
{
f
(
t− a

)}(
ω
)

=

∫ ∞
−∞

f
(
u− a

)
e−jωu du

=

∫ ∞
−∞

f
(
y
)
e−jω(y+a) dy (change of variables with u = y + a)

=

∫ ∞
−∞

f
(
y
)
e−jωye−jωa dy

= e−jωa
∫ ∞
−∞

f
(
y
)
e−jωy dy

= e−jωaF
(
ω
)
.

The frequency shift formula is obtained as follows:

F
{
ejbtf

(
t
)} (

ω
)

=

∫ ∞
−∞

ejbuf
(
u
)
e−jωu du

=

∫ ∞
−∞

f
(
u
)
e−j(ω−b)u du = F

(
ω − b

)
.

The convolution property

The convolution of f ∗ g of continuous functions f and g is defined to be

(f ∗ g)
(
t
)

=

∫ ∞
−∞

f
(
t− x

)
g
(
x
)
dx =

∫ ∞
−∞

f
(
x
)
g
(
t− x

)
dx

where the integrals are interpreted as Cauchy principal values. Convolution
in the time domain corresponds to multiplication in the frequency domain,
and vise versa:
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F
{

(f ∗ g)
(
t
)}(

ω
)

= F
(
ω
)
G
(
ω
)
,

F
{
f
(
t
)
g
(
t
)}(

ω
)

=
1

2π
(F ∗G)

(
ω
)
.

We prove the first formula as follows:

F
(
ω
)
G
(
ω
)

= F
(
ω
) ∫ ∞
−∞

g(u)e−juω du

=

∫ ∞
−∞

g(u)e−juωF
(
ω
)
du

=

∫ ∞
−∞

g(u)F
{
f
(
t− u

)}
du (shift property)

=

∫ ∞
−∞

∫ ∞
−∞

g(u)f
(
t− u

)
e−jtω du dt

=

∫ ∞
−∞

(∫ ∞
−∞

g(u)f
(
t− u

)
du

)
e−jtω dt

=

∫ ∞
−∞

(
(f ∗ g)

(
t
))
e−jtω dt

= F
{

(f ∗ g)
(
t
)}
.

We omit the proof of the second formula as it is somewhat involved.
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Symmetry

The symmetry property for Fourier transforms is given as follows:

F
{
F
{
f
}(
t
)}(

ω
)

= F
{
F
(
t
)}(

ω
)

= 2πf
(
− ω

)
.

Here f is first transformed to the frequency domain, thereby obtaining F
(
ω
)
.

Then the Fourier transform F is regarded as a "time domain function F
(
t
)
"

and the transform is applied again.

We now prove the formula. Using the inverse transform formula, we get

f
(
t
)

=
1

2π

∫ ∞
−∞

ejωtF
(
ω
)
dω

which implies that

2πf
(
− t
)

=

∫ ∞
−∞

e−jωtF
(
ω
)
dω.

This shows, recalling the formula for the (non-inverse) transform operator
F , that

2πf
(
− ω

)
=

∫ ∞
−∞

e−juωF
(
u
)
du = F

{
F
(
t
)}(

ω
)
. (53)

Note of course that the equality applies only where the functions are contin-
uous. At points of discontinuity, the values can differ.

It is customary to write

f(t)↔ F (ω)

in order to indicate that f(t) and F (ω) are a transformation pair so that
F({f(t)} = F (ω). Note that A↔ B does not imply B ↔ A.
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Other properties of the Fourier transform

We have

F (−ω) = F (ω)∗.

This is justified as follows. First note that

F
(
ω
)

=

∫ ∞
−∞

f
(
u
)
e−jωu du

=

∫ ∞
−∞

f
(
u
)

cos
(
ωu
)
du− j

∫ ∞
−∞

f
(
u
)

sin
(
ωu
)
du.

Therefore

F
(
− ω

)
=

∫ ∞
−∞

f
(
u
)
e−j(−ω)u du

=

∫ ∞
−∞

f
(
u
)

cos
(
ωu
)
du+ j

∫ ∞
−∞

f
(
u
)

sin
(
ωu
)
du = F

(
ω
)∗
.
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5.4 Parseval’s identity

We have shown that the Fourier series of a T -periodic function f satisfies the
Parseval’s identity

1

T

∫ d+T

d

f 2
(
t
)
dt =

∞∑
n=−∞

∣∣cn∣∣2.
There exists a corresponding result for functions that can be non-periodic:

∫ ∞
−∞

f 2
(
u
)
du =

1

2π

∫ ∞
−∞

∣∣F(ω)∣∣2 dω (Parseval’s identity).

We now prove the identity. Firstly, using the definition of the Fourier trans-
form, the convolution property and the definition of convolution, we have

∫ ∞
−∞

f 2
(
u
)
e−jωu du = F

{
f 2
(
t
)}(

ω
)

=
1

2π
(F ∗ F )

(
ω
)

=
1

2π

∫ ∞
−∞

F
(
ω − x

)
F
(
x
)
dx.

Substituting ω = 0 to the equation gives

∫ ∞
−∞

f 2
(
u
)
du =

1

2π

∫ ∞
−∞

F
(
− x
)
F
(
x
)
dx.

Since F satisfies the identity F
(
− x
)

= F
(
x
)∗, we have
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∫ ∞
−∞

f 2
(
u
)
du =

1

2π

∫ ∞
−∞

∣∣F(ω)∣∣2 dω.
Note that our earlier version of Parseval’s identity related the average power
of a function to the coefficients of the related Fourier series. In the cur-
rent case allowing non-periodic functions, the name of the related concept is
(total) energy7

E =

∫ ∞
−∞

f 2
(
u
)
du =

1

2π

∫ ∞
−∞

∣∣F(ω)∣∣2 dω (Energy of f).

The function

1

2π

∣∣F(ω)∣∣2 (or alternatively
∣∣F(ω)∣∣2),

is called the spectral energy density (of the signal f). Its graph is the related
energy spectrum.

7Note that the notion of average is problematic for non-periodic functions. Thus we
now talk about total quantities. It depends on the application whether the terms power
and energy are sensible from the point of view of the application.
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6 Discrete-time Fourier transform

Recall Section 4 where we discussed the discrete Fourier transform DTF. The
point was to approximate a Fourier series based on samples gk, i.e., values of
the function underlying the Fourier series. It is possible to approximate the
Fourier transform (rather than the Fourier series) of a function in an analo-
gous way. This leads to the definition of the discrete-time Fourier transform
(DTFT).

Let h > 0. Assume we have a sequence(
f(hk)

)k=∞

k=−∞
.

of equally spaced samples of a possibly non-periodic function f . The number
h is referred to as the sampling period of the sequence. Our aim is now to
estimate the Fourier transform F of f by using the sequence.

We—quite predictably—assume that f satisfies the Dirichlet conditions for
Fourier integrals. We also note that in practical applications, the sequence
of samples is of course not infinite, but here we do consider the sequence
infinite indeed. However, having a large enough finite set of values samples
a should do in real life.

The plain old Fourier transform of the function f is the integral

F
(
ω
)

=

∫ ∞
−∞

f
(
t
)
e−jωt dt.

We consider the related Riemann sum

∞∑
k=−∞

f
(
tk
)
e−jωtk∆t

where the time interval ∆t is equal to h and the the points tk are situated
at the lower bounds of the time intervals. Indeed, we can write this sum as

∞∑
k=−∞

f
(
kh
)
e−jωkhh.
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This sum gives the discrete-time Fourier transform DTFT:

F̂
(
ω
)

= h
∞∑

k=−∞

f
(
kh
)
e−jωkh (DTFT)

Note that we constructed a function F̂ with a non-discrete domain using a
discrete sequence of samples.

Example 6.1. Let the sampling period be h = 1. Define

x
(
k
)

=

{
ak k ≥ 0

0 k < 0

where |a| < 1 and k ∈ Z. Then we have

X̂
(
ω
)

=
∞∑

k=−∞

x
(
k
)
e−jωk =

∞∑
k=0

ake−jωk =
∞∑
k=0

(
ae−jω

)k

=
1

1− ae−jω

by the formula for geometric series. Now X̂ is of type X̂ : R → R with the
non-discrete domain R.

In a real-life application, we begin sampling at some time instant t = 0 and
end the sampling process later at (or just before) some time point t = c.
Then we only obtain values in the interval [0, c). Suppose the values of the
sampled function are known to be zero outside this interval. Suppose we have
N samples with equally spaced time instants. Letting the sampling period
be h = c

N
, we end up with the sequence

(
gk

)N−1

k=0
=
(
f
(
0
)
, f
(
h
)
, f
(
2h
)
, . . . , f

(
(N − 1)h

))
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of samples.

The discrete-time Fourier transform is

F̂
(
ω
)

= h
N−1∑
k=0

f
(
kh
)
e−jωkh = h

N−1∑
k=0

gke
−jωkh.

The sum F̂
(
ω
)
approximates the Fourier transform F

(
ω
)
of f . Thus we will

study the relation of DTFT to the discrete Fourier transform DTF next, as
DTF approximates the Fourier series of some function that agrees with f in
the finite sampling interval.

We observe that

F̂

(
ω +

2π

h

)
= h

N−1∑
k=0

gke
−j(ω+ 2π

h )kh = h
N−1∑
k=0

gke
−jωkhe−j2πk = F̂

(
ω
)
.

This means that F̂ is periodic with period
2π

h

while the Fourier transform F that F̂ approximates is not periodic.

We split the period 2π
h

into N subintervals and take equally spaced samples
of F̂ , thereby obtaining

F̂n = F̂

(
n

2π

hN

)
= h

N−1∑
k=0

gke
−j(n 2π

hN )kh = h
N−1∑
k=0

gke
−jkn 2π

N = hGn

where Gn are the terms of the discrete Fourier transform DTF. Thus we have

(
F̂n

)N−1

n=0
=
(
hGn

)N−1

n=0
.

Thus the discrete-time Fourier transform inherits the symmetry property
of the discrete Fourier transform (GN−n = G∗n). This seems to suggest that

therefore at most half of the sequence
(
F̂n

)N−1

n=0
can be a good approximation

of F . As already mentioned, also the periodicity of F̂ is problematic.
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7 Further developments

In this section we discuss range of issues that are relatively relevant to
some parts of Fourier theory but somewhat too advanced to allow a prop-
erly detailed and mathematically unambiguous treatment in this introductory
course. The section should be regarded as an appetizer for further studies.
The issues discussed in this section will not be part of the exam.

On the Dirac delta function (not in exam)

The Dirac delta, also known as the Dirac delta function, is an operator that
is often used in order to simplify integrals. Intuitively, the Dirac delta δ(t) is
a function that is zero everywhere except for at t = 0, and furthermore, any
integral ∫ a

−a
δ(0) dt

over an interval [−a, a] containing 0 gives 1, i.e.,∫ a

−a
δ(0) dt = 1.

The problem here is that there exists no function with the above properties.
This is easy to see, recalling that the properties should be satisfied for all
intervals [−a, a] with a a positive real.

The Dirac delta is used in physics to model the density of an idealized point
charge or point mass. (Indeed, what could the density of a point particle be,
as a point has volume zero?). The operator first appeared in mathematical
analysis in various forms in the 1800s, without a properly rigorous definition.
The first rigorous theory was given by Bochner in the 1930s. Currently the
delta is typically defined as a generalized function or a distribution—notions
we shall not specify in detail. Thus we look at these issues informally.

For our purposes, the Dirac delta δ is an operator that satisfies the following
properties.
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1. δ
(
t− a

)
= 0 whenever t 6= a.

2. If a ∈ (−c, c), then
∫ c

−c
δ
(
t− a

)
dt = 1.

3. δ
(
at
)

=
1

|a|
δ
(
t
)
.

If a ∈ (−c, c) and f is continuous at t = a, then

4.
∫ c

−c
f
(
t
)
δ
(
t− a

)
dt = f

(
a
)
.

Informally, we can picture a graph for δ(t− a) which is zero everywhere and
infinitely high at t = a. Note that property 1 immediately implies that

δ(t) = δ(−t). (54)

The property 4 above is often called the sifting property, as intuitively
speaking, the integral sifts through the function f , working through all values
of t from −c to c, and selects only the value f(a) at t = a as a result of the
integral.

Note that we cannot claim that the four above properties of δ define δ.
Instead, we are simply listing some properties of δ. A mathematical definition
ought to give a unique mathematical object, so simply specifying the four
above axioms leaves it open whether there are multiple objects satisfying the
axioms. However, the four axioms above suffice for our purposes here, and a
detailed definition is omitted.

Example 7.1. Let us integrate cos
(
t
)
δ
(
t− π

3

)
from −10 to 10. According

to the sifting property, we have∫ 10

−10

cos
(
t
)
δ
(
t− π

3

)
dt = cos

(π
3

)
=

1

2
.
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Let us now make some informal observations. First, notice that∫ t

−∞
δ
(
u
)
du =

{
0, t < 0

1, t > 0.

Thus this integral looks like the Heaviside function. Furthermore, it is easy
to see that if t 6= 0, then we have

H ′
(
t
)

= 0.

These results informally suggest that it could be the case that H ′(t) = δ(t).
The following results—relating to these informal intuitions—can be derived
from the fully developed mathematical theory, although we shall not do the
formal derivation here:∫ t

−∞
δ
(
u
)
du = H

(
t
)
and H ′

(
t
)

= δ
(
t
)
.

The Dirac delta can be used to expand Fourier theory so that functions not
satisfying the Dirichlet conditions for Fourier integrals do still have sensible
Fourier transforms.

Example 7.2. Let us find the Fourier transform of

δ
(
t− a

)
.

We have
F
(
ω
)

=

∫ ∞
−∞

δ
(
u− a

)
e−jωu du = e−jωa.

Example 7.3. Let us find the Fourier transform of the constant function

f
(
t
)

= c

where c 6= 0. This function does not satisfy the Dirichlet conditions. How-
ever, it is possible to proceed by using the symmetry property. Firstly, if

g
(
t
)

= c δ
(
t
)
,
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then the Fourier transform of g(t) is

G(ω) =

∞∫
−∞

c δ(u) e−jωudu = c e−jω·0 = c.

Thus, recalling the symmetry property

F
{
F
{
f
}(
t
)}(

ω
)

= F
{
F
(
t
)}(

ω
)

= 2πf
(
− ω

)
,

we have

F
(
ω
)

= F
{
G
(
t
)︸︷︷︸

=c

}(
ω
)

= 2πg(−ω) = 2π c δ
(
− ω

)
= 2π cδ

(
ω
)
.

(Note that δ(ω) = δ(−ω) is a consequence of Equation 54.)

Example 7.4. Let us find the Fourier transform of the cosine function. The
cosine function does not satisfy the Dirichlet conditions. However, we can
proceed as follows. First, recall Equation 53, which stated that

2πf
(
− ω

)
=

∫ ∞
−∞

e−juωF
(
u
)
du = F

{
F
(
t
)}(

ω
)
.

Thus we have the transformation pairs

f(t)↔ F (ω) and F (t)↔ 2πf(−ω).

Thereby, recalling the Fourier transform of δ(t − a) from Example 7.2, we
have

δ
(
t− a

)
↔ e−jωa and e−jta ↔ 2πδ

(
− ω − a

)
= 2πδ

(
ω + a

)
.
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Thus we have

F
{

cos
(
at
)}(

ω
)

= F
{ejat + e−jat

2

}(
ω
)

=
1

2
F
{
ejat
}(
ω
)

+
1

2
F
{
e−jat

}(
ω
)

= π
(
δ
(
ω − a

)
+ δ
(
ω + a

))
.
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On the discrete Fourier transform DFT (not in exam)

In this section we consider the fast Fourier transform FFT which is a fast
way of computing the discrete Fourier transform. Our approach is neces-
sarily quite rough and corners are cut at several points without further
mention. A fully detailed algorithmic analysis is beyond the level of this
course. Due to the informal nature of the section, the topic will not be part
of the exam.

Recall the definition of DFT:

The discrete Fourier transform DFT converts (g0, g1, g2, . . . , gN−1) to
(G0, G1, G2, . . . , GN−1) such that

Gn =
N−1∑
k=0

gke
−jnk 2π

N for n = 0, 1, 2, . . . , N − 1.

The DFT is widely used in applications, so it is desirable to be able to
compute DFT fast on a computer. Simply using the above sum in a direct
and naive way, already the main terms gk and e−jnk

2π
N in the sum require us

to perform N multiplications and N − 1 additions for each value of n. Since
n = 0, 1, 2, . . . , N − 1, this means O(N2) calculations (recall the definition of
O from Section 3.5).

This easily becomes too slow in practice, where N can be huge, in the thou-
sands or even in the millions. However, there exists an algorithm (or several
algorithms to be exact), called the fast Fourier transform (FFT) that cuts the
number of calculations down to O(N log2N). This is a huge improvement,
and is often essential for being able to finish up the required calculations
in the first place. For example, for N = 109, if one main operation took
a nanosecond, the naive algorithm would imply a running time of over 30
years and the FFT algorithm less than a minute. (Here, in order to get some
estimate, we are, inter alia, simply forgetting all factors that could be hidden
in the O-notation.)
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Early variants of the idea behind the fast algorithm were known already to
Gauss in the early 1800s. Currently, perhaps the most widely known FFT
algorithm is the Cooley-Tukey algorithm (1960s). It, and its variants, are
among the most important numerical algorithms in existence.

The FFT algorithm uses symmetries of e−jnk
2π
N . Define WN = e−j

2π
N . Then

we have

1. Complex conjugate symmetry: W n(N−k)
N = W−nk

N = (W nk
N )∗.

2. Periodicity in k and n: W nk
N = W

n(N+k)
N = W

(n+N)k
N .

To roughly sketch a common approach to FFT, suppose N = 2m for some
m. This assumption is made mainly just to simplify the argument below.
We have

Gn =
N−1∑
k=0

gkW
nk
N =

N−2∑
k is even

gkW
nk
N +

N−1∑
k= is odd

gkW
nk
N

=

N/2− 1∑
r=0

g2rW
n2r
N +

N/2− 1∑
r=0

g2r+1W
n(2r+1)
N

=

N/2−1∑
r=0

g2rW
nr
N/2 +W n

N

N/2−1∑
r=0

g2r+1W
nr
N/2

since W 2
N = (e−j2π/N)2 = e−

j2π
N/2 = WN/2. Looking at the two sums, we see

that they both are DFT-sums, but now with a smaller upper limit N/2− 1
instead of N−1. Now, we have halved the upper limit from N−1 to N/2−1.
Thus we go from N samples to two sets of N/2 samples.
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Define

N/2−1∑
r=0

g2rW
nr
N/2 + W n

N

N/2−1∑
r=0

g2r+1W
nr
N/2

Godd
n + W n

NG
even
n .

The key is now that when we compute each of G0, G1, G2, . . . , Gn, some
calculations start to appear repeatedly due to the symmetries. In particular,
the sums Godd

n and Geven
n do not have to be computed every time for each n,

but they can instead be reused. Furthermore, we went from the sum with
N samples to two sums with N/2 samples. This can be repeated, starting
from the sums with N/2 samples, thus ending up with four sums with N/4
samples. Repeating this over and over, it is relatively straightforward to
show that this ultimately leads to the desired number O(N log2N) of main
operations. We skip the full details.
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