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Abstract— Device shipment trends indicate that the number of 

web-enabled devices will grow very rapidly. The rapid growth of 

different types of devices in our daily lives will fundamentally 

change the expectations on device synchronization. In this paper, 

we introduce EDB – a database architecture that has been built 

specifically to support automatic multi-master synchronization 

between multiple mobile devices with potentially intermittent 

network connectivity. EDB supports the broader vision of 

multiple device ownership and liquid software in which 

applications and services are expected to seamlessly roam from 

one device or computer to another. 

Index Terms—Liquid software; multiple device ownership; 

multi-device computing; multi-screen computing; multi-master 

synchronization; distributed databases; mobile databases; 

eventual consistency. 

I. INTRODUCTION 

Device shipment trends indicate that the number of web-

enabled devices is growing very rapidly. Every day, over 3.5 

million new mobile devices and tablets are activated worldwide 

– over five times more than the number of babies born each 

day. We will quickly move from a world in which each person 

has only two or three devices – a PC, smartphone and tablet – 

to a world in which people will use dozens of devices in their 

daily lives: laptops, phones, tablets and “phablets” of various 

sizes, game consoles, TVs, car displays, digital photo frames, 

home appliances, and so on – all of them connected to the 

Internet. These internet-connected consumer devices will come 

in various shapes and sizes, targeting different usage situations, 

use cases and environments.  

In general, we are at a tipping point with connected devices, 

entering a new era of multiple device ownership. This trend 

will only strengthen as other new types of gadgets and 

wearables such as smartwatches and intelligent eyewear 

become available more widely. This new era will dramatically 

raise the expectations for device interoperability, implying 

significant changes for software architecture as well. 

In this paper, we will introduce EDB (also known as Elastic 

DataBase) that was designed specifically support multiple 

device ownership and the broader vision of liquid software 

discussed in Section II. EDB is a NoSQL document store that 

supports multi-master synchronization, specifically in the 

context of multiple mobile devices with potentially intermittent 

network connectivity.  

The rest of this paper is structured as follows. In Section II, 

we will describe the liquid software vision and provide general 

motivation for a multi-master data architecture. In Section III, 

we will provide an overview of the EDB system, summarizing 

its overall architecture, requirements, key technical concepts 

and characteristics. In Section IV, we summarize the 

replication and conflict handling mechanisms that are at the 

heart of a true multi-master database. In Section V, we will 

discuss the current EDB implementation, followed by a 

summary of related work in Section VI. Finally, Section VII 

provides some concluding remarks. 

II. LIQUID MULTI-DEVICE SOFTWARE 

By liquid software, we refer to an approach in which 

applications and data can flow from one device or screen to 

another seamlessly, allowing the users to roam freely from one 

device to another without worrying about device management 

or having to remember complex steps. A central aspect of a 

true, casual multi-device computing experience is the ability to 

move fluidly from one device to another. This kind of behavior 

is also sometimes referred to as experience roaming or 

experience continuity. 

Three simple liquid software usage scenarios are depicted 

in Fig. 1. In the top left image, the user is transferring images 

“on the fly” from a smart phone to a tablet. In the top right 

image, the user is transferring a live application from one tablet 

to another. In the bottom image, the user is transferring 

application state from her tablet to her car’s navigation and 

entertainment system. In each case, the assumption is that the 

users can continue doing what they were doing on one device 

on the other devices, with seamless and fluid transition between 

the devices, and applications automatically adjusting to the 

form factor and specific capabilities of each target device. 

This kind seamless, continuous usage of software across 

multiple devices is not generally supported yet, although such 

user interface concepts have been presented in a number of 

forums before [1, 2, 3]. Furthermore, some years ago cloud-

based data and file synchronization services such as Apple 

Computer’s iCloud (http://www.icloud.com) and Google’s 



Google Sync (http://www.google.com/sync) started raising the 

expectations and paving the way for automatically 

synchronized devices. Although these systems are limited to 

devices supporting the same native ecosystem, and generally 

for performing file and data synchronization only, they already 

point out the direction in which the industry is headed in the 

longer run. 

 

 

Fig. 1.  Liquid software illustrated. 

We recently published a Liquid Software Manifesto [4] in 

which we laid out the principles for seamless multi-device 

software. Apple’s recent Handoff announcement is the first 

commercial manifestation of the broader vision of liquid 

software, allowing an Apple device user, e.g., to start editing e-

mail messages or text messages on one Apple device and 

seamlessly continue editing them on another Apple device or 

computer (http://www.apple.com/ios/ios8/continuity/).  

The term liquid software was originally coined by Hartman, 

Manber, Peterson and Proebsting in a technical report back in 

1996 [5]. Their focus was primarily on enabling the flexible 

use of network-transported code on top of the Java platform 

[6]. However, the necessary underlying technical mechanisms 

are much the same regardless of whether the transportation 

state is related to user interface state or other areas. For more 

background and historical references on liquid software, refer 

to Section VI and our earlier paper [4]. 

III. EDB IN A NUTSHELL 

EDB is a database architecture and implementation that has 

been created specifically to enable a liquid software 

environment. EDB is built for a heterogonous environment 

consisting of multiple battery powered personal mobile devices 

with limited CPU power, memory and network bandwidth, and 

possibly running different operating systems. The envisioned 

use case for EDB is that of a device cloud or edge cloud in 

which the user’s devices (smartphones, tablets, laptops, 

smartwatches, etc.) can communicate with each other both 

locally and via the cloud. In a device cloud environment, 

devices will attempt to synchronize themselves primarily 

locally and directly (peer-to-peer) instead of performing 

synchronization via centralized clouds. 

A. Architecture Overview 

At the implementation level, liquid software implies that 

the applications and their data are kept in sync across devices. 

Furthermore, to support the illusion of truly liquid user 

interface behavior, it must be possible to carry user interface 

state information from one device to another as efficiently as 

possible. Ideally, state synchronization should occur 

automatically with minimum intervention required from the 

application or system software developer. 

The requirement for data to be seamlessly available on all 

the user’s devices leads system design towards a platform 

database architecture that transparently synchronizes data 

between devices, supporting multi-master replication with 

automatic conflict handling. The basic EDB architecture is 

depicted in Fig. 2. 

 

 

Fig. 2. Overview of the EDB architecture. 

As seen in Fig. 2, each EDB-enabled device hosts a 

database instance, with multi-master replication occurring 

between the devices automatically when data on any single 

device changes. Local connectivity mechanisms such as 

Bluetooth LE or WiFi Direct can be utilized to synchronize the 

devices directly. Effectively, the user’s devices form a device 

cloud that can – if necessary – operate independently of any 

conventional cloud backend. In addition, we assume that there 

is a cloud database – hosted on a conventional cloud-based 

server – that maintains a copy of the user's data, allowing the 

user to power off or even lose any or all of his devices, and yet 

rest assured that data is still available. 

Note that EDB is used primarily for storing application 

metadata. Replication of large binary files (e.g., photos, videos, 

e-mail attachments) can be highly inefficient, and some of the 

target devices might be unable to store a large number of such 

files in the first place. Therefore, large binary content is kept 

outside EDB and handled separately by accessing and caching 

such content via URLs. 

B. Requirements 

In this subsection we explain the most essential 

requirements and design constraints behind EDB.  

 

 



Full offline support. A mobile device may be offline or 

with limited connectivity for prolonged periods of time. 

Therefore, our system must provide full offline support, i.e., 

allow devices to be used without any network connection and 

then later re-synchronize themselves when a connection 

becomes available. Solutions that would only cache partial 

database contents on each device are not acceptable: if the user 

were to access pieces of data that are rarely used and available 

only on a specific device, the operation would fail when the 

device is offline. 

Multi-master replication. Replication between devices 

must be multi-master (also known as multi-primary or update-

anywhere); writes must be possible on all devices – not just on 

a central cloud database – or otherwise offline operation would 

be compromised. However, the cloud database may still have a 

privileged position, although it must necessarily be of the “first 

among peers” variety. For example, database operations that 

require a high degree of security (such as changing access 

rights) might only be possible on the cloud database.  

No ACID guarantees. A device may be offline for 

prolonged periods of time and needs to be able to communicate 

with peer devices also in the absence of cloud. For example, if 

the user is traveling abroad and has disabled 3G/4G data 

connectivity in order to save money, a calendar entry made on 

his mobile phone should still be replicated locally to his tablet 

and be viewable there. This means that we optimize for 

availability and partitioning tolerance, not consistency [7]. In 

particular, changes are atomic only on a single data item level, 

and transactions are not supported. 

Conflict handling. In a multi-master system with offline 

capability, replication conflicts are bound to happen every now 

and then. Therefore, a mechanism for handling conflicts is 

needed. However, since we are targeting primarily a single-user 

environment (where possible conflicts are caused by the same 

user who has entered conflicting information on two or more 

devices), the conflict handling mechanism can be kept simple 

and automatic. We will discuss conflict handling later in 

Section IV. 

Access control and security. The database needs to be able 

to isolate applications from each other. For example, a travel 

application must not be able to read information from the user’s 

calendar application, unless that data has been explicitly 

shared. However, all the data in the database belongs to the 

user, and hence there is no need to protect the data from the 

user himself. For example, if the user roots his device, he will 

theoretically have access to all the data, since he knows the 

password used to secure encryption keys. Thus an application 

must not store any data in the database that should be protected 

against the user (e.g., licensing information used to limit access 

to features). In general, the security mechanisms of the 

database must protect applications against other applications, 

users against other users, and users against applications, but not 

applications against the users. 

C. System Architecture 

EDB system architecture is shown in Fig. 3. Device-side 

components are depicted on the left, and the cloud side 

components on the right. White boxes refer to components that 

we have implemented ourselves, while gray boxes indicate 

components based on third-party technologies.  

The EDB API includes the usual CRUD and indexing 

operations for documents, as well as batch versions. Both web-

based (JavaScript) and native versions of the EDB API are 

offered.  

Replicator is our database replicator that will be discussed 

in Section IV. The EDB Platform Adaptation Layer adapts the 

EDB API and replicator implementation to the specific target 

platform. 
  

 

Fig. 3. EDB System Architecture Overview. 

Gray, implementation-specific boxes in Fig. 3 will be 

described in Section V. In the remaining parts of this paper we 

will use the term ‘device’ to refer to EDB on a mobile device, 

and the term ‘cloud’ to refer to the cloud-resident database 

components. In addition, we will use the term ‘sibling’ as a 

generic term that can refer to either one; in other words, when 

term ‘sibling’ is used the intention is to convey that it does not 

matter whether we are talking about device-side or cloud-side 

components. 

D. Key Concepts 

In this subsection we explain the key concepts behind the 

EDB architecture. 

Documents. An EDB database contains documents that are 

JSON objects consisting of named fields (properties). Every 

document has a property called meta – owned and maintained 

by the system – that contains meta information about the 

document, such as document ID, type and version number. The 

meta property cannot be directly written to by applications. 

Types. Documents in EDB are typed – every document has 

a string property meta.type, which specifies the name of type 

that the document belongs to. A type has the following roles: 

1) To provide for a classification of documents. One of the 

most common queries is to get all documents of a given type, 

and even when using more sophisticated queries it is typically 

useful to limit them to certain types of documents. 

2) To define how a document of that type must look like. For 

example, a contact object must always have a name property. 

Note that EDB does not require a type to define a schema – if 

not defined, documents of that type are schemaless. 

3) To provide a basis for access control. For example, 

documents of a certain type might only be accessible to system 

applications. 

 



Types are specified by special system documents, which are 

managed and replicated just like any other documents 

(although there are convenience operations that operate on type 

names rather than document IDs). Their only distinguishing 

feature (aside from being interpreted as type specifications) is 

that their meta.type property is set to the special value _type. 

Document versions. Each document in EDB has a version 

property, which contains the subproperties t, v and r, where t 

stands for timestamp, v stands for version and is an integer that 

is incremented each time the document is updated, and r stands 

for random and is a random integer that is re-generated each 

time when the document is updated. 

When comparing two revisions of the same document, the 

one whose t is larger, that is more recent, is considered better. 

This implies that the clocks on all siblings of the system must 

be reasonably well in sync. The assumption is that every device 

fairly regularly connects to the cloud and that the clocks at that 

point can be adjusted. If t is the same on two revisions, the one 

whose v – that is, the document that has been modified more 

times – is considered better. If t and v are the same on both 

revisions, then r is used for creating an order. The benefit of 

this approach is that the revision can be generated in constant 

time, in contrast to, for instance, CouchDB [8] in which the 

revision is a version number plus a hash calculated from the 

body of the document. 

Indexing and searching. At the moment, EDB does not 

provide means for free-form searching; rather, searching must 

always be performed against local, explicitly created indexes. 

Note that indexes are not replicated – this allows us to avoid 

the indexing overhead on devices where the indexes are not 

needed. Furthermore, unlike data, indexes can be omitted 

without compromising offline support since indexes can be 

created on-demand also when a device is offline. When 

necessary, we can support free-form searching using a separate 

server-side search service that uses Lucene indexing. 

IV. REPLICATION AND CONFLICT HANDLING 

One of the most critical features of a true multi-device 

database is replication and the associated conflict handling 

mechanisms. In this section, we will provide an overview of 

those mechanisms in the context of the EDB system. 

Replication support based on activity log. A central goal 

in the design of the EDB replication mechanism was to reduce 

the number of roundtrips. Given that most of the participating 

device siblings are battery powered mobile devices, all extra 

radio activity has a direct impact on usage time. The 

assumption is that local processing is energywise much cheaper 

than extra communication. 

In the replication process, one sibling always acts as a client 

and the other as server. In device-to-device replication, the 

device that opened the replication connection acts as the client. 

In device-to-cloud replication, however, the device will always 

be in client role. There are two reasons for this. First, devices 

are running on a cellular network and/or behind a NAT, and 

therefore they are in the general case unreachable from the 

cloud over IP. Second, only the mobile client is fully aware of 

the context; for instance, is it running in the home network or is 

it roaming, is a Wi-Fi network available, is the battery fully 

charged, and so on. 

Our replication mechanism is based on an activity log. 

Conceptually the activity log is a list of IDs of documents that 

have been changed. The log is addressable in the sense that 

each position in the log corresponds to a unique value that can 

be stored. That is, it is possible to store the address of a position 

and later find out what documents have changed, after the point 

in time when the address was stored. The activity log is not a 

change log, since we only store information whether a 

document has been modified, and not how it was modified. 

Further, if a document is modified several times, it will still 

appear in the activity log only once, at the location that 

corresponds to the latest change. 

For each sibling, we maintain a replication offset on the 

activity log that tells us which changes have been replicated to 

that particular sibling. If a sibling is up to date with the local 

database, its offset will point to the head of the log. An 

example is shown in Fig. 4, in which the last time that Sibling 1 

and Sibling 2 replicated with the current host was at time 13 in 

the access log, and those siblings therefore have not seen the 

changes done since then, i.e., they have not seen the changes to 

documents D34 and D27 yet. Sibling 3, however, is up-to-date 

with the current host. 

 

 

Fig. 4. Activity Log and Replication Offsets. 

One benefit of this approach is that the size of the activity 

log is bound by the number of documents in the system, i.e., 

the activity log will not grow excessively. A drawback of the 

approach is that the order in which the documents were 

changed cannot be maintained. This may seem like a minor 

concern; however, as documents are replicated in the order that 

they appear in the activity log (i.e., ordered by last 

modification), we found that application developers were 

sometimes surprised by the order in which replication added 

new documents to the database. For example, if you first create 

a parent document, then child documents, and finally modify 

the parent document to contain references to the child 

documents, the parent document will be replicated last. On the 

other hand, in a multi-master replicating environment the order 

in which changes appear can only rarely be guaranteed, and 

applications should therefore be written defensively in any 

case. 

Lossy conflict handling. The conflict handling approach 

used in EDB was initially motivated by CouchDB [8]. The 

conflict handling approach in CouchDB is such that the 

database deterministically selects a winning version and stores 

 



the history, allowing the developer to later resolve the conflict 

in any way he sees fit. That is, CouchDB selects the winning 

version at conflict detection time, but allows the conflict to 

later be permanently resolved some other way, and requires old 

data to be erased explicitly by the programmer. When we were 

experimenting with CouchDB, this approach proved to be 

problematic, because with a significant amount of conflicts, the 

disk space consumed by the history would become prohibitive. 

Unless the history is purged regularly, the history information 

would soon consume much more space than the actual data. 

In our typical use case – multi-master replication between 

devices owned and used by the same user – conflicts are 

typically of no real significance and the history of conflicts is 

of little interest. For instance, if the user ends up editing the 

same piece of contact information on two devices, entering 

(and losing some of the) conflicting information does not lead 

to any dramatic loss of information. Furthermore, we observed 

that a large fraction of the data was not documents explicitly 

relevant for the user but instead documents used by various 

application and system components for managing their state. In 

those cases the user would not be able to meaningfully resolve 

the conflicts anyway.  

Even in those cases where the documents involved are 

directly meaningful to the user – for instance, a document 

corresponding to a contact – it is not self-evident how and 

when the user should be involved in the resolving of the 

conflict. Since the database is used by the entire platform and 

replication takes place at times deemed appropriate by the 

system and not, for instance, when explicitly instructed to do so 

by the user, conflicts can be detected essentially at any time. In 

general, a system in which the user might at any time be asked 

to resolve a conflict would not be pleasant to use. If the user 

would have to resolve a conflict when he attempts to use a 

document with conflicts, it might mean that he could not call 

someone before he has resolved the conflict. And if the user is 

allowed to postpone the time of conflict resolution, there is a 

risk that he would never actually do it. 

A decision was made that in case of conflicts, not only is 

the winning document selected, but the losing one is deleted. 

This can be described as lossy conflict resolution, as opposed to 

the traditionally employed lossless ones which strive to prevent 

data loss at all costs. This approach proved out to be the most 

pragmatic and appropriate for our use cases.  

Replication frequency. Although immediate change 

updates across devices would be the ideal, for power 

consumption reasons replication cannot be assumed to be 

always on. Rather, replication frequency depends on the power 

budget of a device and the availability of local connectivity 

mechanisms. In many cases, updates may be delayed 

occasionally in order to conserve energy. While prioritizing 

data according to its urgency may sound tempting, we cannot 

rely only on prioritization by third party applications, since 

they would most likely optimize their behavior for the user 

experience of each specific application rather than for the 

overall system power consumption.  

Comments and observations from developer 

perspective. From the developer’s perspective, a replicating 

multi-master database such as EDB poses some interesting 

challenges. For instance, there are few guarantees regarding the 

order of changes from other devices. Changes may arrive out of 

order. Although changes to a single data item are atomic, 

automatic conflict resolution may mix and match changes 

made to multiple data items in various interesting ways.  

We experienced this problem firsthand when an application 

would create a tree hierarchy of objects on one device, and the 

documents would arrive out of order on a second device, 

causing the application to fail because the developer had 

expected documents to appear on the second device in the same 

order as they were created on the first device. Because of this 

expectation, the developer did not take into account that a child 

document might appear in a replicated database earlier than a 

parent document does, even though the parent document was 

originally created first. 

In practice this means that whenever there are any kind of 

data integrity constraints that span multiple documents, 

defensive programming style is required. The programmers are 

much better off redesigning their applications’ data models so 

that there are no multi-document integrity constraints. Our 

recommendation is that applications should employ a design 

pattern in which database changes are monitored by the 

application but they are always validated before updating the 

application’s internal data model, and business logic only 

reacts to and acts on the internal data model. The idea is that 

the internal data model isolates UI and business logic from the 

vagaries of replicated database state, and an application-

specific adapter maps between database contents and the 

application’s internal data model, validating and interpreting as 

necessary. This design approach is similar to the Model-View-

ViewModel (MVVM) design pattern [9]. 

V. IMPLEMENTATION 

EDB was implemented in a project that investigates liquid 

software, with the goal to explore the creation of a software 

platform for seamlessly operating mobile devices. Both web-

based and native (Android) devices were targeted. So far, EDB 

implementation has been used in the creation of several typical 

mobile applications, such as a phonebook, a note editor, an 

email client, and a photo gallery application, all supporting 

seamless data synchronization across multiple devices.  

Technology choices. At the implementation level, EDB is 

not a full database implementation, but rather a replication and 

API layer on top of an existing key-value store, as shown 

earlier in Fig. 3. We first implemented the device-side EDB 

using SQLite3 as the underlying key-value storage engine. The 

idea was that SQL query features could be used for 

implementing more advanced queries in EDB. However, this 

created too many dependencies between the EDB query 

capabilities and SQL, casting doubt on our ability to adapt 

EDB later on for non-SQL database engines. We then 

simplified the query capabilities supported by EDB natively, 

and added the ability to use an external indexer (or search 

service) for free-form searching (see Fig. 3). The simplification 

allowed us to switch the on-device key-value storage engine to 

LevelDB (http://leveldb.org/) that only offers a minimal feature 



set and thus ensured that our API could be provided practically 

on any key-value storage engine. EDB indexes were 

implemented on top of LevelDB. 

Amazon DynamoDB (http://aws.amazon.com/dynamodb/) 

was selected early on as the underlying key-value storage 

service on the server side. Originally we planned to use 

DynamoDB secondary indexes for EDB indexes, but that 

would have severely limited the number of indexes that could 

be created. This would have also prevented us from encrypting 

data in DynamoDB. We opted instead to use an on-premise 

ElasticSearch cluster that allowed us to create an arbitrary 

number of indexes and encrypt all user data in the Amazon 

Web Services (AWS) cloud while maintaining searchability, 

and still rely on the AWS cloud for durability of the data. If the 

ElasticSearch cluster failed, it could always be rebuilt based on 

the data stored in DynamoDB. An additional benefit was the 

possibility to use ElasticSearch for free-form search as well. 

The activity log is implemented on the device side as a 

separate LevelDB database where the key of a log entry is a 

timestamp concatenated with document ID. The value of a log 

entry is empty for updates, but for deletes it contains the 

document metadata so that the document can be completely 

removed from the document database after deletion. On the 

server side, the activity log is implemented using last-modified 

timestamps for documents and by creating a DynamoDB local 

secondary index for the documents that allows them to be 

traversed in last-modified time order. Some server state needs 

to be stored at client (similar to a cookie) to deal with the clock 

skew issue inherent with multi-server cloud setups. 

Storage limits and handling of large binary file content. 

As was already mentioned earlier, EDB is used primarily for 

storing application metadata, and large binary file content is 

kept outside EDB. While the storage capabilities of different 

devices vary, we require all participating devices to store the 

entire contents of the database locally, i.e., all the non-file data 

of the user’s working set, including the file metadata – 

contacts, calendar entries, email headers, picture metadata, and 

so on. In other words, all devices always have a complete 

record of what data the user has in his working set, even though 

the actual (file) data may not be present on all devices. The file 

data itself is cached on each device, and fetched from cloud 

storage if missing. The user is afforded some control over what 

data is kept cached so as to support offline operation (for 

example, to ensure that a particular movie is cached locally 

before boarding a long flight). 

VI. BACKGROUND AND RELATED WORK 

There is a long body of research and development work in 

the area of distributed databases and file systems dating back to 

the 1980’s. Traditionally, such systems were designed for 

server environments or client-server systems for keeping data 

in sync across multiple sites or datacenters over a conventional 

(wired) network. 

Distributed file systems. Historical examples of distributed 

file systems supporting automatic data (file) replication include 

Coda [10] and Ficus [11]. Both systems address the problem of 

disconnected operation, and they support conflict handling with 

file type specific conflict resolvers and the ability to take file 

location into account when choosing resolution policy. Built-in 

conflict resolvers for directories are provided. 

The Coda architecture is somewhat similar to what we 

would today call a traditional cloud architecture, employed by 

services such as Dropbox. In this architecture, clients replicate 

with a server to support disconnected operation, and servers 

replicate with other servers to support high availability. 

However, peer-to-peer replication between clients is not 

supported. In Ficus, in contrast, a peer-to-peer architecture is 

used. Similar to EDB and Bayou (discussed below), the servers 

employ multi-master replication where any node can make 

changes at any time. This means that a set of devices can 

replicate locally with each other even though connectivity to 

the main network is missing. For example, two colleagues 

might collaborate on a document while traveling, using the 

replication to ensure that they see each other’s changes, even 

though neither has connectivity to the corporate network where 

the main file servers are. 

Distributed databases. A distributed database is a 

collection of multiple, logically interrelated databases 

distributed over a computer network. Bayou [12] is a 

distributed, multi-master storage system designed to support 

offline operation. Client applications access Bayou servers, 

which replicate data between each other. As in EDB, data may 

be updated on any replica, and consequently any device that 

has a server is capable of offline operation. Per-write conflict 

resolution policies are used to handle update conflicts. 

In Bayou changes are at first only tentative. Each data item 

has a primary server, and changes only become committed 

(final) once the primary server has handled it (possibly merging 

data from conflicting versions in order to do so). The primary 

server can be chosen to coincide with the locus of the update 

activity. For example, by placing the primary server for a user’s 

own data on the user’s laptop, data updates done on that laptop 

can commit immediately even when offline. Clients can 

determine the state of an update (tentative or committed) and 

expose this information to users; for instance, a calendar event 

might be shown as tentative until it gets committed. Conflict 

resolution is per-write rather than per-type, and conflicts 

resulting from application semantics are also supported (e.g., a 

conflict might result from two meeting room booking data 

items that have overlapping times for the same meeting room). 

Dynamo [13] is a key-value database that has been used by 

Amazon for some of their core services (note that the 

DynamoDB service offered by Amazon is an entirely different 

database). Dynamo employs multi-master replication and 

eventual consistency to provide high availability. In Dynamo, 

replication is not meant to support disconnected operation for 

mobile devices, but it is rather used to support high availability. 

Unlike in Bayou, in which conflict handling policy is 

specified at write time, Dynamo stores multiple versions of 

data in case of conflict and delivers all of them to a client at 

read time. The client can then resolve the conflict by updating 

the value. Another difference to Bayou is that in Dynamo 

conflicts can only happen because of conflicting updates to the 



same data item; conflicts resulting from application semantics 

are not supported. 

Since conflict handling is read time and left up to the 

application, Dynamo does not have the same concept of 

tentative and committed updates as Bayou. However, if an 

application writes a value to the database, an immediately 

following read operation is not guaranteed to return the same 

value since it may access a different replica that has not yet 

received the update. Applications can, however, elect to trade 

availability for durability and consistency. Each operation on a 

data item is processed by the top N nodes in the node 

preference list for that particular data item. By requiring 

participation from a high enough number of nodes (e.g., > N/2 

for both read and write), the application can guarantee that 

once a value has been successfully written, a subsequent read 

operation will be return that value (barring further changes). 

CouchDB [8] is a distributed database in which multi-

master replication is used for guaranteeing reliability and high 

availability – the word “couch” is actually an acronym for 

“Cluster Of Unreliable Commodity Hardware”. Like Dynamo, 

CouchDB stores multiple versions of a data item when 

conflicts are detected during replication. However, CouchDB 

automatically chooses a winning version which is returned by 

subsequent read operations. The selection algorithm is 

deterministic so that eventual consistency is assured even in a 

partitioned network where several nodes might end up 

independently making the selection. 

From the application viewpoint, however, conflicts are 

typically detected at write time (as opposed to Dynamo in 

which they are detected at read time); the application must 

specify the version of data it wishes to overwrite, and if that is 

not the current version, an error will result, forcing the 

application to refetch the document and redo the update. Note 

that a conflict would not trigger this kind of error if the current 

value in the database was auto-selected as the winner in a 

conflict. In this case a conflict can only be detected by 

explicitly querying for conflicts. 

CouchDB has a relatively simple replication scheme in 

which the replicator is really just another database client. This 

has resulted in the creation of multiple open source 

implementations of mobile (on-device) databases that support 

CouchDB replication. These databases are a popular method 

for adding robust offline capability to a mobile application. 

Cloud-based databases for mobile applications. There 

are a number of recent cloud-based database systems that offer 

built-in mechanisms specifically for keeping multiple clients 

effortlessly in sync. These systems are based on a master-slave 

architecture, keeping data primarily in a cloud database, but 

they use a local in-memory database as a latency optimization 

and to minimize the effects of transient connectivity loss.  

Two examples of such systems are Firebase [14] and 

Meteor [15]. In both systems, the local database contains only 

the part of the main database the application currently needs, 

i.e., the working set of the application. Rather than performing 

operations directly on the cloud database, the mobile 

application performs the operation on the local database. 

Replication is used for transferring data between cloud 

database and local database. This approach allows client-side 

database operations to be fast and operational even when the 

device is disconnected. However, there is a tradeoff regarding 

consistency – local database changes may be overruled by the 

cloud. This is rarely a problem, though, as these systems are 

not meant for prolonged offline use. In systems such as 

Firebase and Meteor, the use of a local database and replication 

is only meant to mask wireless network latency and short 

periods of disconnection from the centralized cloud. 

The main difference between Firebase and Meteor is how 

they handle consistency and conflict resolution. Firebase uses 

transactions with update functions specified by the client. The 

update function gets the current value of the data it is updating 

as a parameter. The function is first applied on the client and 

later (when connectivity is available) on the server.  If a 

conflict is detected when applying the function on the server 

side (i.e., the original value is different on the server side than it 

was on the client side), the client side value is updated to the 

most recent value and the update function is re-run. The update 

function may abort the transaction if the current value has 

changed so that the update no longer makes sense (e.g., a 

deduction of funds might fail if the account balance is now 

zero). In this case the update is also rolled back on the client 

side. However, the rollback will not affect any other 

transactions that used the tentative client-side value before it 

was rolled back – the application itself is responsible for 

handling cascading roll-backs. 

Meteor, in contrast, uses traditional backend functions that 

use the features of the backend database (MongoDB) to 

guarantee consistency. However, the code of those backend 

functions can also be made available on the client side, in 

which case the functions are first run on the client side to create 

a simulated (tentative) version of the data. This data will be 

displayed briefly to the user and soon overwritten by the real 

data that was generated by the backend function running on the 

server side. Compared to the Firebase approach, this has the 

advantage that as long as all the dependent updates are 

performed using backend functions, too, cascading rollbacks 

are not a problem – the dependent simulated values written on 

the client side will simply be overwritten by the corresponding 

real values written by the backend functions on the server side, 

or rolled back if those functions raise an exception. Another 

benefit is that the backend functions can perform arbitrary 

processing to perform their task – the client side logic can 

deviate from server side logic if needed. 

Additional comments and observations. Currently 

dominant mobile operating systems all provide the beginnings 

of multi-device support by allowing small amounts of 

application state to be shared between devices via cloud-based 

notification services. However, these features are meant 

primarily for synchronizing configuration data, preferences, 

and small amounts of app-related data, e.g., which game levels 

the user has completed. The functionality and scalability of 

such mechanisms are insufficient for liquid software use cases. 

File synchronization through cloud storage services such as 

Google Drive, Microsoft OneDrive or Dropbox is also 

available. However, using them for database replication (e.g., 



by implementing a key-value store on top of the file system) is 

problematic from performance viewpoint, and could exceed 

access quotas in more extensive use. 

In principle, basic liquid software support can be 

implemented at the mobile application level by utilizing a built-

in on-device database such as SQLite that is available in 

dominant mobile operating systems. SQLite itself does not 

support replication, but replication functionality could be added 

on top of it. By using an on-device database and replicating 

with the cloud – rather than remotely accessing the cloud 

database – applications could provide robust offline capability 

and also reduce database access latency. However, on mobile 

devices such solutions could be disastrous from energy 

management perspective, with each application triggering 

replication (and thus turning radios on) independently without 

any coordination by the operating system.  

In practice, liquid software requires a platform database that 

is shared by all applications and offers both adequate database 

features and efficient replication with appropriate 

considerations for system-wide power and energy conservation. 

Our own work in this area was originally motivated and 

inspired significantly by CouchDB as well our earlier work on 

the Data API of the Cloudberry HTML5 platform [16]. 

However, as we realized that there is currently no system that 

would meet all our requirements, we ended up designing and 

implementing EDB. For a summary of related work on liquid 

multi-device software, refer to our earlier paper [4]. 

VII. CONCLUSIONS 

We take it for granted that we are at yet another turning 

point in the computing industry. The dominant era of PCs and 

smartphones is about to come to an end. So far, standalone 

devices have been the norm, and software has been primarily 

associated with a single device. We believe that in the 

computing environment of the future, the users will have a 

considerably larger number of internet-connected devices in 

their daily lives than today. Unlike today, no single device will 

dominate the user’s digital life.  

In this paper we have introduced EDB – a database 

architecture and implementation that has been created 

specifically to support multiple device ownership and the 

broader vision of liquid software in which applications and 

their data are expected to be seamlessly available on all the 

devices that the user has. EDB is a key-value database with 

built-in support for multi-master data replication across 

devices, with a lossy conflict resolution algorithm for handling 

replication with less overhead than in competing systems. 

While EDB is not a production system yet, it has already been 

used for implementing various core mobile applications for a 

feature-rich multi-device environment. 

In summary, while liquid software may still seem like 

science fiction, the technical ingredients and enablers for 

realizing the vision are already largely in place. We believe that 

within the next ten years, seamless multi-device operation will 

be the norm rather than an exception. Automatically replicating 

multi-master databases supporting offline operation will play a 

central role in realizing the broader vision. We hope that this 

paper, for its part, encourages people to continue work in this 

exciting area. 
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