
EDB: A Multi-Master Database for

Liquid Multi-Device Software

Oskari Koskimies

Johan Wikman

Nokia Technologies

Otaniementie 19, FI-02150 Espoo, Finland

{firstname.lastname}@nokia.com

Tapani Mikola

Antero Taivalsaari

Nokia Technologies

Visiokatu 3, FI-33720 Tampere, Finland

{firstname.lastname}@nokia.com

Abstract— Device shipment trends indicate that the number of

web-enabled devices will grow very rapidly. The rapid growth of

different types of devices in our daily lives will fundamentally

change the expectations on device synchronization. In this paper,

we introduce EDB – a database architecture that has been built

specifically to support automatic multi-master synchronization

between multiple mobile devices with potentially intermittent

network connectivity. EDB supports the broader vision of

multiple device ownership and liquid software in which

applications and services are expected to seamlessly roam from

one device or computer to another.

Index Terms—Liquid software; multiple device ownership;

multi-device computing; multi-screen computing; multi-master

synchronization; distributed databases; mobile databases;

eventual consistency.

I. INTRODUCTION

Device shipment trends indicate that the number of web-

enabled devices is growing very rapidly. Every day, over 3.5

million new mobile devices and tablets are activated worldwide

– over five times more than the number of babies born each

day. We will quickly move from a world in which each person

has only two or three devices – a PC, smartphone and tablet –

to a world in which people will use dozens of devices in their

daily lives: laptops, phones, tablets and “phablets” of various

sizes, game consoles, TVs, car displays, digital photo frames,

home appliances, and so on – all of them connected to the

Internet. These internet-connected consumer devices will come

in various shapes and sizes, targeting different usage situations,

use cases and environments.

In general, we are at a tipping point with connected devices,

entering a new era of multiple device ownership. This trend

will only strengthen as other new types of gadgets and

wearables such as smartwatches and intelligent eyewear

become available more widely. This new era will dramatically

raise the expectations for device interoperability, implying

significant changes for software architecture as well.

In this paper, we will introduce EDB (also known as Elastic

DataBase) that was designed specifically support multiple

device ownership and the broader vision of liquid software

discussed in Section II. EDB is a NoSQL document store that

supports multi-master synchronization, specifically in the

context of multiple mobile devices with potentially intermittent

network connectivity.

The rest of this paper is structured as follows. In Section II,

we will describe the liquid software vision and provide general

motivation for a multi-master data architecture. In Section III,

we will provide an overview of the EDB system, summarizing

its overall architecture, requirements, key technical concepts

and characteristics. In Section IV, we summarize the

replication and conflict handling mechanisms that are at the

heart of a true multi-master database. In Section V, we will

discuss the current EDB implementation, followed by a

summary of related work in Section VI. Finally, Section VII

provides some concluding remarks.

II. LIQUID MULTI-DEVICE SOFTWARE

By liquid software, we refer to an approach in which

applications and data can flow from one device or screen to

another seamlessly, allowing the users to roam freely from one

device to another without worrying about device management

or having to remember complex steps. A central aspect of a

true, casual multi-device computing experience is the ability to

move fluidly from one device to another. This kind of behavior

is also sometimes referred to as experience roaming or

experience continuity.

Three simple liquid software usage scenarios are depicted

in Fig. 1. In the top left image, the user is transferring images

“on the fly” from a smart phone to a tablet. In the top right

image, the user is transferring a live application from one tablet

to another. In the bottom image, the user is transferring

application state from her tablet to her car’s navigation and

entertainment system. In each case, the assumption is that the

users can continue doing what they were doing on one device

on the other devices, with seamless and fluid transition between

the devices, and applications automatically adjusting to the

form factor and specific capabilities of each target device.

This kind seamless, continuous usage of software across

multiple devices is not generally supported yet, although such

user interface concepts have been presented in a number of

forums before [1, 2, 3]. Furthermore, some years ago cloud-

based data and file synchronization services such as Apple

Computer’s iCloud (http://www.icloud.com) and Google’s

Google Sync (http://www.google.com/sync) started raising the

expectations and paving the way for automatically

synchronized devices. Although these systems are limited to

devices supporting the same native ecosystem, and generally

for performing file and data synchronization only, they already

point out the direction in which the industry is headed in the

longer run.

Fig. 1. Liquid software illustrated.

We recently published a Liquid Software Manifesto [4] in

which we laid out the principles for seamless multi-device

software. Apple’s recent Handoff announcement is the first

commercial manifestation of the broader vision of liquid

software, allowing an Apple device user, e.g., to start editing e-

mail messages or text messages on one Apple device and

seamlessly continue editing them on another Apple device or

computer (http://www.apple.com/ios/ios8/continuity/).

The term liquid software was originally coined by Hartman,

Manber, Peterson and Proebsting in a technical report back in

1996 [5]. Their focus was primarily on enabling the flexible

use of network-transported code on top of the Java platform

[6]. However, the necessary underlying technical mechanisms

are much the same regardless of whether the transportation

state is related to user interface state or other areas. For more

background and historical references on liquid software, refer

to Section VI and our earlier paper [4].

III. EDB IN A NUTSHELL

EDB is a database architecture and implementation that has

been created specifically to enable a liquid software

environment. EDB is built for a heterogonous environment

consisting of multiple battery powered personal mobile devices

with limited CPU power, memory and network bandwidth, and

possibly running different operating systems. The envisioned

use case for EDB is that of a device cloud or edge cloud in

which the user’s devices (smartphones, tablets, laptops,

smartwatches, etc.) can communicate with each other both

locally and via the cloud. In a device cloud environment,

devices will attempt to synchronize themselves primarily

locally and directly (peer-to-peer) instead of performing

synchronization via centralized clouds.

A. Architecture Overview

At the implementation level, liquid software implies that

the applications and their data are kept in sync across devices.

Furthermore, to support the illusion of truly liquid user

interface behavior, it must be possible to carry user interface

state information from one device to another as efficiently as

possible. Ideally, state synchronization should occur

automatically with minimum intervention required from the

application or system software developer.

The requirement for data to be seamlessly available on all

the user’s devices leads system design towards a platform

database architecture that transparently synchronizes data

between devices, supporting multi-master replication with

automatic conflict handling. The basic EDB architecture is

depicted in Fig. 2.

Fig. 2. Overview of the EDB architecture.

As seen in Fig. 2, each EDB-enabled device hosts a

database instance, with multi-master replication occurring

between the devices automatically when data on any single

device changes. Local connectivity mechanisms such as

Bluetooth LE or WiFi Direct can be utilized to synchronize the

devices directly. Effectively, the user’s devices form a device

cloud that can – if necessary – operate independently of any

conventional cloud backend. In addition, we assume that there

is a cloud database – hosted on a conventional cloud-based

server – that maintains a copy of the user's data, allowing the

user to power off or even lose any or all of his devices, and yet

rest assured that data is still available.

Note that EDB is used primarily for storing application

metadata. Replication of large binary files (e.g., photos, videos,

e-mail attachments) can be highly inefficient, and some of the

target devices might be unable to store a large number of such

files in the first place. Therefore, large binary content is kept

outside EDB and handled separately by accessing and caching

such content via URLs.

B. Requirements

In this subsection we explain the most essential

requirements and design constraints behind EDB.

Full offline support. A mobile device may be offline or

with limited connectivity for prolonged periods of time.

Therefore, our system must provide full offline support, i.e.,

allow devices to be used without any network connection and

then later re-synchronize themselves when a connection

becomes available. Solutions that would only cache partial

database contents on each device are not acceptable: if the user

were to access pieces of data that are rarely used and available

only on a specific device, the operation would fail when the

device is offline.

Multi-master replication. Replication between devices

must be multi-master (also known as multi-primary or update-

anywhere); writes must be possible on all devices – not just on

a central cloud database – or otherwise offline operation would

be compromised. However, the cloud database may still have a

privileged position, although it must necessarily be of the “first

among peers” variety. For example, database operations that

require a high degree of security (such as changing access

rights) might only be possible on the cloud database.

No ACID guarantees. A device may be offline for

prolonged periods of time and needs to be able to communicate

with peer devices also in the absence of cloud. For example, if

the user is traveling abroad and has disabled 3G/4G data

connectivity in order to save money, a calendar entry made on

his mobile phone should still be replicated locally to his tablet

and be viewable there. This means that we optimize for

availability and partitioning tolerance, not consistency [7]. In

particular, changes are atomic only on a single data item level,

and transactions are not supported.

Conflict handling. In a multi-master system with offline

capability, replication conflicts are bound to happen every now

and then. Therefore, a mechanism for handling conflicts is

needed. However, since we are targeting primarily a single-user

environment (where possible conflicts are caused by the same

user who has entered conflicting information on two or more

devices), the conflict handling mechanism can be kept simple

and automatic. We will discuss conflict handling later in

Section IV.

Access control and security. The database needs to be able

to isolate applications from each other. For example, a travel

application must not be able to read information from the user’s

calendar application, unless that data has been explicitly

shared. However, all the data in the database belongs to the

user, and hence there is no need to protect the data from the

user himself. For example, if the user roots his device, he will

theoretically have access to all the data, since he knows the

password used to secure encryption keys. Thus an application

must not store any data in the database that should be protected

against the user (e.g., licensing information used to limit access

to features). In general, the security mechanisms of the

database must protect applications against other applications,

users against other users, and users against applications, but not

applications against the users.

C. System Architecture

EDB system architecture is shown in Fig. 3. Device-side

components are depicted on the left, and the cloud side

components on the right. White boxes refer to components that

we have implemented ourselves, while gray boxes indicate

components based on third-party technologies.

The EDB API includes the usual CRUD and indexing

operations for documents, as well as batch versions. Both web-

based (JavaScript) and native versions of the EDB API are

offered.

Replicator is our database replicator that will be discussed

in Section IV. The EDB Platform Adaptation Layer adapts the

EDB API and replicator implementation to the specific target

platform.

Fig. 3. EDB System Architecture Overview.

Gray, implementation-specific boxes in Fig. 3 will be

described in Section V. In the remaining parts of this paper we

will use the term ‘device’ to refer to EDB on a mobile device,

and the term ‘cloud’ to refer to the cloud-resident database

components. In addition, we will use the term ‘sibling’ as a

generic term that can refer to either one; in other words, when

term ‘sibling’ is used the intention is to convey that it does not

matter whether we are talking about device-side or cloud-side

components.

D. Key Concepts

In this subsection we explain the key concepts behind the

EDB architecture.

Documents. An EDB database contains documents that are

JSON objects consisting of named fields (properties). Every

document has a property called meta – owned and maintained

by the system – that contains meta information about the

document, such as document ID, type and version number. The

meta property cannot be directly written to by applications.

Types. Documents in EDB are typed – every document has

a string property meta.type, which specifies the name of type

that the document belongs to. A type has the following roles:

1) To provide for a classification of documents. One of the

most common queries is to get all documents of a given type,

and even when using more sophisticated queries it is typically

useful to limit them to certain types of documents.

2) To define how a document of that type must look like. For

example, a contact object must always have a name property.

Note that EDB does not require a type to define a schema – if

not defined, documents of that type are schemaless.

3) To provide a basis for access control. For example,

documents of a certain type might only be accessible to system

applications.

Types are specified by special system documents, which are

managed and replicated just like any other documents

(although there are convenience operations that operate on type

names rather than document IDs). Their only distinguishing

feature (aside from being interpreted as type specifications) is

that their meta.type property is set to the special value _type.

Document versions. Each document in EDB has a version

property, which contains the subproperties t, v and r, where t

stands for timestamp, v stands for version and is an integer that

is incremented each time the document is updated, and r stands

for random and is a random integer that is re-generated each

time when the document is updated.

When comparing two revisions of the same document, the

one whose t is larger, that is more recent, is considered better.

This implies that the clocks on all siblings of the system must

be reasonably well in sync. The assumption is that every device

fairly regularly connects to the cloud and that the clocks at that

point can be adjusted. If t is the same on two revisions, the one

whose v – that is, the document that has been modified more

times – is considered better. If t and v are the same on both

revisions, then r is used for creating an order. The benefit of

this approach is that the revision can be generated in constant

time, in contrast to, for instance, CouchDB [8] in which the

revision is a version number plus a hash calculated from the

body of the document.

Indexing and searching. At the moment, EDB does not

provide means for free-form searching; rather, searching must

always be performed against local, explicitly created indexes.

Note that indexes are not replicated – this allows us to avoid

the indexing overhead on devices where the indexes are not

needed. Furthermore, unlike data, indexes can be omitted

without compromising offline support since indexes can be

created on-demand also when a device is offline. When

necessary, we can support free-form searching using a separate

server-side search service that uses Lucene indexing.

IV. REPLICATION AND CONFLICT HANDLING

One of the most critical features of a true multi-device

database is replication and the associated conflict handling

mechanisms. In this section, we will provide an overview of

those mechanisms in the context of the EDB system.

Replication support based on activity log. A central goal

in the design of the EDB replication mechanism was to reduce

the number of roundtrips. Given that most of the participating

device siblings are battery powered mobile devices, all extra

radio activity has a direct impact on usage time. The

assumption is that local processing is energywise much cheaper

than extra communication.

In the replication process, one sibling always acts as a client

and the other as server. In device-to-device replication, the

device that opened the replication connection acts as the client.

In device-to-cloud replication, however, the device will always

be in client role. There are two reasons for this. First, devices

are running on a cellular network and/or behind a NAT, and

therefore they are in the general case unreachable from the

cloud over IP. Second, only the mobile client is fully aware of

the context; for instance, is it running in the home network or is

it roaming, is a Wi-Fi network available, is the battery fully

charged, and so on.

Our replication mechanism is based on an activity log.

Conceptually the activity log is a list of IDs of documents that

have been changed. The log is addressable in the sense that

each position in the log corresponds to a unique value that can

be stored. That is, it is possible to store the address of a position

and later find out what documents have changed, after the point

in time when the address was stored. The activity log is not a

change log, since we only store information whether a

document has been modified, and not how it was modified.

Further, if a document is modified several times, it will still

appear in the activity log only once, at the location that

corresponds to the latest change.

For each sibling, we maintain a replication offset on the

activity log that tells us which changes have been replicated to

that particular sibling. If a sibling is up to date with the local

database, its offset will point to the head of the log. An

example is shown in Fig. 4, in which the last time that Sibling 1

and Sibling 2 replicated with the current host was at time 13 in

the access log, and those siblings therefore have not seen the

changes done since then, i.e., they have not seen the changes to

documents D34 and D27 yet. Sibling 3, however, is up-to-date

with the current host.

Fig. 4. Activity Log and Replication Offsets.

One benefit of this approach is that the size of the activity

log is bound by the number of documents in the system, i.e.,

the activity log will not grow excessively. A drawback of the

approach is that the order in which the documents were

changed cannot be maintained. This may seem like a minor

concern; however, as documents are replicated in the order that

they appear in the activity log (i.e., ordered by last

modification), we found that application developers were

sometimes surprised by the order in which replication added

new documents to the database. For example, if you first create

a parent document, then child documents, and finally modify

the parent document to contain references to the child

documents, the parent document will be replicated last. On the

other hand, in a multi-master replicating environment the order

in which changes appear can only rarely be guaranteed, and

applications should therefore be written defensively in any

case.

Lossy conflict handling. The conflict handling approach

used in EDB was initially motivated by CouchDB [8]. The

conflict handling approach in CouchDB is such that the

database deterministically selects a winning version and stores

the history, allowing the developer to later resolve the conflict

in any way he sees fit. That is, CouchDB selects the winning

version at conflict detection time, but allows the conflict to

later be permanently resolved some other way, and requires old

data to be erased explicitly by the programmer. When we were

experimenting with CouchDB, this approach proved to be

problematic, because with a significant amount of conflicts, the

disk space consumed by the history would become prohibitive.

Unless the history is purged regularly, the history information

would soon consume much more space than the actual data.

In our typical use case – multi-master replication between

devices owned and used by the same user – conflicts are

typically of no real significance and the history of conflicts is

of little interest. For instance, if the user ends up editing the

same piece of contact information on two devices, entering

(and losing some of the) conflicting information does not lead

to any dramatic loss of information. Furthermore, we observed

that a large fraction of the data was not documents explicitly

relevant for the user but instead documents used by various

application and system components for managing their state. In

those cases the user would not be able to meaningfully resolve

the conflicts anyway.

Even in those cases where the documents involved are

directly meaningful to the user – for instance, a document

corresponding to a contact – it is not self-evident how and

when the user should be involved in the resolving of the

conflict. Since the database is used by the entire platform and

replication takes place at times deemed appropriate by the

system and not, for instance, when explicitly instructed to do so

by the user, conflicts can be detected essentially at any time. In

general, a system in which the user might at any time be asked

to resolve a conflict would not be pleasant to use. If the user

would have to resolve a conflict when he attempts to use a

document with conflicts, it might mean that he could not call

someone before he has resolved the conflict. And if the user is

allowed to postpone the time of conflict resolution, there is a

risk that he would never actually do it.

A decision was made that in case of conflicts, not only is

the winning document selected, but the losing one is deleted.

This can be described as lossy conflict resolution, as opposed to

the traditionally employed lossless ones which strive to prevent

data loss at all costs. This approach proved out to be the most

pragmatic and appropriate for our use cases.

Replication frequency. Although immediate change

updates across devices would be the ideal, for power

consumption reasons replication cannot be assumed to be

always on. Rather, replication frequency depends on the power

budget of a device and the availability of local connectivity

mechanisms. In many cases, updates may be delayed

occasionally in order to conserve energy. While prioritizing

data according to its urgency may sound tempting, we cannot

rely only on prioritization by third party applications, since

they would most likely optimize their behavior for the user

experience of each specific application rather than for the

overall system power consumption.

Comments and observations from developer

perspective. From the developer’s perspective, a replicating

multi-master database such as EDB poses some interesting

challenges. For instance, there are few guarantees regarding the

order of changes from other devices. Changes may arrive out of

order. Although changes to a single data item are atomic,

automatic conflict resolution may mix and match changes

made to multiple data items in various interesting ways.

We experienced this problem firsthand when an application

would create a tree hierarchy of objects on one device, and the

documents would arrive out of order on a second device,

causing the application to fail because the developer had

expected documents to appear on the second device in the same

order as they were created on the first device. Because of this

expectation, the developer did not take into account that a child

document might appear in a replicated database earlier than a

parent document does, even though the parent document was

originally created first.

In practice this means that whenever there are any kind of

data integrity constraints that span multiple documents,

defensive programming style is required. The programmers are

much better off redesigning their applications’ data models so

that there are no multi-document integrity constraints. Our

recommendation is that applications should employ a design

pattern in which database changes are monitored by the

application but they are always validated before updating the

application’s internal data model, and business logic only

reacts to and acts on the internal data model. The idea is that

the internal data model isolates UI and business logic from the

vagaries of replicated database state, and an application-

specific adapter maps between database contents and the

application’s internal data model, validating and interpreting as

necessary. This design approach is similar to the Model-View-

ViewModel (MVVM) design pattern [9].

V. IMPLEMENTATION

EDB was implemented in a project that investigates liquid

software, with the goal to explore the creation of a software

platform for seamlessly operating mobile devices. Both web-

based and native (Android) devices were targeted. So far, EDB

implementation has been used in the creation of several typical

mobile applications, such as a phonebook, a note editor, an

email client, and a photo gallery application, all supporting

seamless data synchronization across multiple devices.

Technology choices. At the implementation level, EDB is

not a full database implementation, but rather a replication and

API layer on top of an existing key-value store, as shown

earlier in Fig. 3. We first implemented the device-side EDB

using SQLite3 as the underlying key-value storage engine. The

idea was that SQL query features could be used for

implementing more advanced queries in EDB. However, this

created too many dependencies between the EDB query

capabilities and SQL, casting doubt on our ability to adapt

EDB later on for non-SQL database engines. We then

simplified the query capabilities supported by EDB natively,

and added the ability to use an external indexer (or search

service) for free-form searching (see Fig. 3). The simplification

allowed us to switch the on-device key-value storage engine to

LevelDB (http://leveldb.org/) that only offers a minimal feature

set and thus ensured that our API could be provided practically

on any key-value storage engine. EDB indexes were

implemented on top of LevelDB.

Amazon DynamoDB (http://aws.amazon.com/dynamodb/)

was selected early on as the underlying key-value storage

service on the server side. Originally we planned to use

DynamoDB secondary indexes for EDB indexes, but that

would have severely limited the number of indexes that could

be created. This would have also prevented us from encrypting

data in DynamoDB. We opted instead to use an on-premise

ElasticSearch cluster that allowed us to create an arbitrary

number of indexes and encrypt all user data in the Amazon

Web Services (AWS) cloud while maintaining searchability,

and still rely on the AWS cloud for durability of the data. If the

ElasticSearch cluster failed, it could always be rebuilt based on

the data stored in DynamoDB. An additional benefit was the

possibility to use ElasticSearch for free-form search as well.

The activity log is implemented on the device side as a

separate LevelDB database where the key of a log entry is a

timestamp concatenated with document ID. The value of a log

entry is empty for updates, but for deletes it contains the

document metadata so that the document can be completely

removed from the document database after deletion. On the

server side, the activity log is implemented using last-modified

timestamps for documents and by creating a DynamoDB local

secondary index for the documents that allows them to be

traversed in last-modified time order. Some server state needs

to be stored at client (similar to a cookie) to deal with the clock

skew issue inherent with multi-server cloud setups.

Storage limits and handling of large binary file content.

As was already mentioned earlier, EDB is used primarily for

storing application metadata, and large binary file content is

kept outside EDB. While the storage capabilities of different

devices vary, we require all participating devices to store the

entire contents of the database locally, i.e., all the non-file data

of the user’s working set, including the file metadata –

contacts, calendar entries, email headers, picture metadata, and

so on. In other words, all devices always have a complete

record of what data the user has in his working set, even though

the actual (file) data may not be present on all devices. The file

data itself is cached on each device, and fetched from cloud

storage if missing. The user is afforded some control over what

data is kept cached so as to support offline operation (for

example, to ensure that a particular movie is cached locally

before boarding a long flight).

VI. BACKGROUND AND RELATED WORK

There is a long body of research and development work in

the area of distributed databases and file systems dating back to

the 1980’s. Traditionally, such systems were designed for

server environments or client-server systems for keeping data

in sync across multiple sites or datacenters over a conventional

(wired) network.

Distributed file systems. Historical examples of distributed

file systems supporting automatic data (file) replication include

Coda [10] and Ficus [11]. Both systems address the problem of

disconnected operation, and they support conflict handling with

file type specific conflict resolvers and the ability to take file

location into account when choosing resolution policy. Built-in

conflict resolvers for directories are provided.

The Coda architecture is somewhat similar to what we

would today call a traditional cloud architecture, employed by

services such as Dropbox. In this architecture, clients replicate

with a server to support disconnected operation, and servers

replicate with other servers to support high availability.

However, peer-to-peer replication between clients is not

supported. In Ficus, in contrast, a peer-to-peer architecture is

used. Similar to EDB and Bayou (discussed below), the servers

employ multi-master replication where any node can make

changes at any time. This means that a set of devices can

replicate locally with each other even though connectivity to

the main network is missing. For example, two colleagues

might collaborate on a document while traveling, using the

replication to ensure that they see each other’s changes, even

though neither has connectivity to the corporate network where

the main file servers are.

Distributed databases. A distributed database is a

collection of multiple, logically interrelated databases

distributed over a computer network. Bayou [12] is a

distributed, multi-master storage system designed to support

offline operation. Client applications access Bayou servers,

which replicate data between each other. As in EDB, data may

be updated on any replica, and consequently any device that

has a server is capable of offline operation. Per-write conflict

resolution policies are used to handle update conflicts.

In Bayou changes are at first only tentative. Each data item

has a primary server, and changes only become committed

(final) once the primary server has handled it (possibly merging

data from conflicting versions in order to do so). The primary

server can be chosen to coincide with the locus of the update

activity. For example, by placing the primary server for a user’s

own data on the user’s laptop, data updates done on that laptop

can commit immediately even when offline. Clients can

determine the state of an update (tentative or committed) and

expose this information to users; for instance, a calendar event

might be shown as tentative until it gets committed. Conflict

resolution is per-write rather than per-type, and conflicts

resulting from application semantics are also supported (e.g., a

conflict might result from two meeting room booking data

items that have overlapping times for the same meeting room).

Dynamo [13] is a key-value database that has been used by

Amazon for some of their core services (note that the

DynamoDB service offered by Amazon is an entirely different

database). Dynamo employs multi-master replication and

eventual consistency to provide high availability. In Dynamo,

replication is not meant to support disconnected operation for

mobile devices, but it is rather used to support high availability.

Unlike in Bayou, in which conflict handling policy is

specified at write time, Dynamo stores multiple versions of

data in case of conflict and delivers all of them to a client at

read time. The client can then resolve the conflict by updating

the value. Another difference to Bayou is that in Dynamo

conflicts can only happen because of conflicting updates to the

same data item; conflicts resulting from application semantics

are not supported.

Since conflict handling is read time and left up to the

application, Dynamo does not have the same concept of

tentative and committed updates as Bayou. However, if an

application writes a value to the database, an immediately

following read operation is not guaranteed to return the same

value since it may access a different replica that has not yet

received the update. Applications can, however, elect to trade

availability for durability and consistency. Each operation on a

data item is processed by the top N nodes in the node

preference list for that particular data item. By requiring

participation from a high enough number of nodes (e.g., > N/2

for both read and write), the application can guarantee that

once a value has been successfully written, a subsequent read

operation will be return that value (barring further changes).

CouchDB [8] is a distributed database in which multi-

master replication is used for guaranteeing reliability and high

availability – the word “couch” is actually an acronym for

“Cluster Of Unreliable Commodity Hardware”. Like Dynamo,

CouchDB stores multiple versions of a data item when

conflicts are detected during replication. However, CouchDB

automatically chooses a winning version which is returned by

subsequent read operations. The selection algorithm is

deterministic so that eventual consistency is assured even in a

partitioned network where several nodes might end up

independently making the selection.

From the application viewpoint, however, conflicts are

typically detected at write time (as opposed to Dynamo in

which they are detected at read time); the application must

specify the version of data it wishes to overwrite, and if that is

not the current version, an error will result, forcing the

application to refetch the document and redo the update. Note

that a conflict would not trigger this kind of error if the current

value in the database was auto-selected as the winner in a

conflict. In this case a conflict can only be detected by

explicitly querying for conflicts.

CouchDB has a relatively simple replication scheme in

which the replicator is really just another database client. This

has resulted in the creation of multiple open source

implementations of mobile (on-device) databases that support

CouchDB replication. These databases are a popular method

for adding robust offline capability to a mobile application.

Cloud-based databases for mobile applications. There

are a number of recent cloud-based database systems that offer

built-in mechanisms specifically for keeping multiple clients

effortlessly in sync. These systems are based on a master-slave

architecture, keeping data primarily in a cloud database, but

they use a local in-memory database as a latency optimization

and to minimize the effects of transient connectivity loss.

Two examples of such systems are Firebase [14] and

Meteor [15]. In both systems, the local database contains only

the part of the main database the application currently needs,

i.e., the working set of the application. Rather than performing

operations directly on the cloud database, the mobile

application performs the operation on the local database.

Replication is used for transferring data between cloud

database and local database. This approach allows client-side

database operations to be fast and operational even when the

device is disconnected. However, there is a tradeoff regarding

consistency – local database changes may be overruled by the

cloud. This is rarely a problem, though, as these systems are

not meant for prolonged offline use. In systems such as

Firebase and Meteor, the use of a local database and replication

is only meant to mask wireless network latency and short

periods of disconnection from the centralized cloud.

The main difference between Firebase and Meteor is how

they handle consistency and conflict resolution. Firebase uses

transactions with update functions specified by the client. The

update function gets the current value of the data it is updating

as a parameter. The function is first applied on the client and

later (when connectivity is available) on the server. If a

conflict is detected when applying the function on the server

side (i.e., the original value is different on the server side than it

was on the client side), the client side value is updated to the

most recent value and the update function is re-run. The update

function may abort the transaction if the current value has

changed so that the update no longer makes sense (e.g., a

deduction of funds might fail if the account balance is now

zero). In this case the update is also rolled back on the client

side. However, the rollback will not affect any other

transactions that used the tentative client-side value before it

was rolled back – the application itself is responsible for

handling cascading roll-backs.

Meteor, in contrast, uses traditional backend functions that

use the features of the backend database (MongoDB) to

guarantee consistency. However, the code of those backend

functions can also be made available on the client side, in

which case the functions are first run on the client side to create

a simulated (tentative) version of the data. This data will be

displayed briefly to the user and soon overwritten by the real

data that was generated by the backend function running on the

server side. Compared to the Firebase approach, this has the

advantage that as long as all the dependent updates are

performed using backend functions, too, cascading rollbacks

are not a problem – the dependent simulated values written on

the client side will simply be overwritten by the corresponding

real values written by the backend functions on the server side,

or rolled back if those functions raise an exception. Another

benefit is that the backend functions can perform arbitrary

processing to perform their task – the client side logic can

deviate from server side logic if needed.

Additional comments and observations. Currently

dominant mobile operating systems all provide the beginnings

of multi-device support by allowing small amounts of

application state to be shared between devices via cloud-based

notification services. However, these features are meant

primarily for synchronizing configuration data, preferences,

and small amounts of app-related data, e.g., which game levels

the user has completed. The functionality and scalability of

such mechanisms are insufficient for liquid software use cases.

File synchronization through cloud storage services such as

Google Drive, Microsoft OneDrive or Dropbox is also

available. However, using them for database replication (e.g.,

by implementing a key-value store on top of the file system) is

problematic from performance viewpoint, and could exceed

access quotas in more extensive use.

In principle, basic liquid software support can be

implemented at the mobile application level by utilizing a built-

in on-device database such as SQLite that is available in

dominant mobile operating systems. SQLite itself does not

support replication, but replication functionality could be added

on top of it. By using an on-device database and replicating

with the cloud – rather than remotely accessing the cloud

database – applications could provide robust offline capability

and also reduce database access latency. However, on mobile

devices such solutions could be disastrous from energy

management perspective, with each application triggering

replication (and thus turning radios on) independently without

any coordination by the operating system.

In practice, liquid software requires a platform database that

is shared by all applications and offers both adequate database

features and efficient replication with appropriate

considerations for system-wide power and energy conservation.

Our own work in this area was originally motivated and

inspired significantly by CouchDB as well our earlier work on

the Data API of the Cloudberry HTML5 platform [16].

However, as we realized that there is currently no system that

would meet all our requirements, we ended up designing and

implementing EDB. For a summary of related work on liquid

multi-device software, refer to our earlier paper [4].

VII. CONCLUSIONS

We take it for granted that we are at yet another turning

point in the computing industry. The dominant era of PCs and

smartphones is about to come to an end. So far, standalone

devices have been the norm, and software has been primarily

associated with a single device. We believe that in the

computing environment of the future, the users will have a

considerably larger number of internet-connected devices in

their daily lives than today. Unlike today, no single device will

dominate the user’s digital life.

In this paper we have introduced EDB – a database

architecture and implementation that has been created

specifically to support multiple device ownership and the

broader vision of liquid software in which applications and

their data are expected to be seamlessly available on all the

devices that the user has. EDB is a key-value database with

built-in support for multi-master data replication across

devices, with a lossy conflict resolution algorithm for handling

replication with less overhead than in competing systems.

While EDB is not a production system yet, it has already been

used for implementing various core mobile applications for a

feature-rich multi-device environment.

In summary, while liquid software may still seem like

science fiction, the technical ingredients and enablers for

realizing the vision are already largely in place. We believe that

within the next ten years, seamless multi-device operation will

be the norm rather than an exception. Automatically replicating

multi-master databases supporting offline operation will play a

central role in realizing the broader vision. We hope that this

paper, for its part, encourages people to continue work in this

exciting area.

REFERENCES

[1] D. Dearman and J.S. Pierce, "It's on my other computer!":

computing with multiple devices. Proc. CHI'2008 (Florence,

Italy, April 5-10), 2008, pp. 767-776.

[2] M.A. Nacenta, D. Aliakseyeu, S. Subramanian, and C. Gutwin,

A comparison of techniques for multi-display reaching. Proc.

CHI'2005 (Portland, Oregon, USA, April 2-7), 2005, pp. 371-

380.

[3] S. K. Kane et al., Exploring cross-device web use on PCs and

mobile devices. Proc. Interact 2009, pp. 722-735.

[4] A. Taivalsaari, T. Mikkonen and K. Systä, Liquid software

manifesto: the era of multiple device ownership and its

implications for software architecture. Proc. 38th Annual

International Computers, Software & Applications Conference

(IEEE COMPSAC'2014, Västerås, Sweden, July 21-25), 2014.

[5] J. J. Hartman, U. Manber, L. L. Peterson, and T. A. Proebsting,

Liquid software: a new paradigm for networked systems. Univ.

of Arizona Tech Report TR 96-11, 1996.

[6] J. J. Hartman, P. A. Bigot, P. Bridges, B. Montz, R. Piltz, O.

Spatscheck, T. A. Proebsting, L. L. Peterson, and A. Bavier,

Joust: a platform for liquid software. IEEE Computer, April

1999, pp. 50-56.

[7] N. Lynch and S. Gilbert, Brewer's conjecture and the feasibility

of consistent, available, partition-tolerant web services. ACM

SIGACT News, Volume 33 Issue 2, 2002, pp. 51-59.

[8] J. C. Anderson, N. Slater and J. Lehnardt, CouchDB: The

Definitive Guide (1st ed.), O'Reilly Media, 2009, ISBN 0-596-

15816-5. URL: http://guide.couchdb.org/.

[9] J. Gossman, Introduction to Model/View/ViewModel pattern for

building WPF apps, Microsoft Developer Network Blogs, Tales

from the Smart Client (Oct 8th), 2005. URL:

http://blogs.msdn.com/b/johngossman/archive/2005/10/08/4786

83.aspx.

[10] M. Satyanarayanan, J.J. Kistler and E.H. Siegel, Coda: a

resilient distributed file system. IEEE Workshop on Workstation

Operating Systems, Nov. 1987.

[11] P. Reiher, J. Heidemann, D. Ratner, G. Skinner and G. Popek,

Resolving file conflicts in the Ficus file system. Proc. USENIX

Summer 1994 Technical Conference, Volume 1, 1994.

[12] D.B. Terry, M.M. Theimer, K. Petersen, A.J. Demers, M.J.

Spreitzer and C.H. Hauser, Managing update conflicts in Bayou,

a weakly connected replicated storage system. Proc. 15th ACM

Symposium on Operating Systems Principles, 1995.

[13] D. Hastorun, M. Jampani, G. Kakulapati, A. Pilchin, S.

Sivasubramanian, P. Vosshall, W. Vogels, Dynamo: Amazon's

highly available key-value store. Proc. 21st ACM Symposium

on Operating Systems Principles, 2007.

[14] Firebase, Inc., Firebase developer documentation. URL:

https://www.firebase.com/docs/.

[15] I. Strack, Getting Started with Meteor.js JavaScript Framework.

Packt Publishing, 2012.

[16] A. Taivalsaari and K. Systä, Cloudberry: HTML5 cloud phone

platform for mobile devices. IEEE Software, July/August 2012,

pp. 30-35.

