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Abstract—We introduce TUT Acoustic Scenes 2016 database
for environmental sound research, consisting of binaural record-
ings from 15 different acoustic environments. A subset of this
database, called TUT Sound Events 2016, contains annotations
for individual sound events, specifically created for sound event
detection. TUT Sound Events 2016 consists of residential area
and home environments, and is manually annotated to mark
onset, offset and label of sound events. In this paper we present
the recording and annotation procedure, the database content,
a recommended cross-validation setup and performance of su-
pervised acoustic scene classification system and event detection
baseline system using mel frequency cepstral coefficients and
Gaussian mixture models. The database is publicly released to
provide support for algorithm development and common ground
for comparison of different techniques.

I. INTRODUCTION

Databases are of crucial importance in algorithm devel-
opment, comparison of algorithms and reproducibility of re-
sults. Research fields that have well established benchmark
databases benefit of rapid pace of development, with compe-
tition between teams on obtaining the highest performance. In
this respect, detection and classification of acoustic scenes and
events is picking up the pace, with special sessions organized
in recent conferences and the Detection and Classification of
Acoustic Scenes and Events (DCASE) 2013 challenge. This
database is part of our effort to support interest in this research
area and provide the research community with a starting point
for data collection and common evaluation procedure.

Acoustic scene classification is defined as recognition of
the audio environment, with applications in devices requiring
environmental awareness [1], [2]. The environment can be
defined based on physical or social context, e.g. park, office,
meeting, etc. The problem is usually solved as a closed-set
classification task, where identification of the current acoustic
scene is required. A small number of publicly available
datasets for acoustic scene classification exist. For example
DCASE 2013 [3] acoustic scene development dataset contains
10 classes, 10 examples of 30 seconds length per class, with an
evaluation set of the same size. Another example is the LITIS
Rouen Audio scene dataset [4] containing 3026 examples for
19 classes, audio of length 30s. Additionally, a number of
published studies use proprietary datasets. Results of acoustic
scene classification range from 58% for 24 classes to 82% for

6 higher-level classes on the same data [2] to 93.4% for 19
classes [5]. Performance depends on the number of classes
and their characteristics, with acoustic scenes that are very
different from each other faring better, as expected.

Sound event detection is defined as recognition of individual
sound events in audio, e.g. ”bird singing”, ”car passing by”,
requiring estimation of onset and offset for distinct sound
event instances and identification of the sound. Applications
for sound event detection are found in surveillance, including
security, healthcare and wildlife monitoring [6]–[12], audio
and video content-based indexing and retrieval [13]–[15].

Sound event detection is usually approached as supervised
learning, with sound event classes defined in advance and
audio examples available for each class. Depending on the
complexity of the required output, we differentiate between
monophonic sound event detection in which the output is a
sequence of the most prominent sound events at each time
and polyphonic sound event detection in which detection
of overlapping sounds is required [16]. Previous work on
sound event detection is relatively fragmented, with studies
using different, mostly proprietary datasets that are not openly
available to other research groups. This hinders reproducibility
and comparison of experiments. An effort in the direction
of establishing a benchmark dataset was made with DCASE
2013 [3], by providing a public dataset and a challenge
for different tasks in environmental sound classification. The
training material contains 16 event classes, provided as isolated
sound examples, 20 examples per class. The validation and
evaluation data consist of synthetic mixtures containing over-
lapping events, 9 files for validation and 12 files for evaluation,
with a length of over 1-2 minutes.

Collecting data for acoustic scene classification is a rel-
atively quick process involving recording and annotation of
audio. However, care should be taken to obtain high acoustic
variability by recording in many different locations and sit-
uations for each scene class. On the other hand, annotation
of audio recordings for sound event detection is a very slow
process due to the presence of multiple overlapping sounds.
An easier way to obtain well annotated data for sound event
detection is creation of synthetic mixtures using isolated sound
events - possibly allowing control of signal-to-noise ratio and
amount of overlapping sounds [17]. This method has the



advantage of being efficient and providing a detailed and exact
ground truth. However, synthetic mixtures cannot model the
variability encountered in real life, where there is no control
over the number and type of sound sources and their degree
of overlapping. Real-life audio data is easy to collect, but is
very time consuming to annotate.

We introduce a dataset of real-life recordings that offers
high quality audio for research in acoustic scene classification
and polyphonic sound event detection. The audio material was
carefully recorded and annotated. A cross-validation setup is
provided that places audio recorded in the same location to
the same side of the experiment. This avoids contamination
between train and test set through use of the exact same
recording conditions, which can result in over-optimistic per-
formance through learning of acoustic conditions instead of
generalization.

The paper is organized as followes: Section II introduces
the data collection principles, motivating the choices made
in recording, annotation and postprocessing stages. Sections
III and IV present in detail TUT Acoustic Scenes 2016 - the
dataset for acoustic scene classification and TUT Sound Events
2016 - the dataset for sound event detection, including statis-
tics about their content, partitioning for system development
and evaluation, and performance of a simple baseline system in
a cross-validation setup on the development set. The evaluation
set was later released for the DCASE 2016 challenge [18].
Finally, Section V presents conclusions and future work.

II. DATA COLLECTION PRINCIPLES

The data collection procedure takes into account the possi-
bility for extending this dataset by other parties, therefore it
includes some rules for recording and annotation to guarantee
sufficient acoustic variability and uniform labeling procedure.
The sound events dataset is planned as a subset of the acoustic
scene dataset, by providing specific detailed annotations of
sound event instances.

A. Recording
To satisfy the requirement for high acoustic variability for

all acoustic scene categories, each recording was done in a
different location: different streets, different parks, different
homes. High quality binaural audio was recorded, with an
average duration of 3-5 minutes per recording, considering
this is the most likely length that someone would record in
everyday life. In general, the recording person was allowed to
talk while recording, but try to minimize the amount of his
own talking. Also, the recording person was required to not
move much (body or head movement), to allow possible future
use of spatial information present in binaural recordings. The
equipment used for recording this specific dataset consists of
binaural Soundman OKM II Klassik/studio A3 electret in-ear
microphones and Roland Edirol R09 wave recorder using 44.1
kHz sampling rate and 24 bit resolution.

B. Annotation
Annotation of the recorded materials was done at two levels:

acoustic scene annotation at recording level and detailed sound

Fig. 1. Polyphonic annotation of audio.

events annotation in each recording for a subset of the data.
The acoustic scene categories were decided in advance.

Individual sound events in each recording were annotated
using freely chosen labels for sounds. Nouns were used to
characterize each sound source, and verbs to characterize the
sound production mechanism, whenever this was possible. The
ground truth is provided as a list of the sound events present
in the recording, with annotated onset and offset for each
sound instance. Sound events are overlapping, as illustrated
in Fig. 1. Recording and annotation was done by two research
assistants that were trained first on few example recordings.
Each assistant annotated half of the data. They were instructed
to annotate all audible sound events, and mark onset and
offset as they consider fit. Because of the overlapping sounds,
each recording had to be listened multiple times and therefore
annotation was a very time consuming procedure.

C. Privacy screening and postprocessing

Postprocessing of the recorded and annotated data involves
aspects related to privacy of recorded individuals, possible
errors in the recording process, and analysis of annotated
sound event classes. For audio material recorded in private
places, written consent was obtained from all people involved.
Material recorded in public places does not require such
consent, but was screened for content, and privacy infring-
ing segments were eliminated. Microphone failure and audio
distortions were also annotated and this annotation is provided
together with the rest of the data.

Analysis of sound event annotation reveals the diversity of
the audio material. Labels for the sound classes were chosen
freely, and this resulted in a large set of labels. There was no
evaluation of inter-annotator agreement due to the high level
of subjectivity inherent to the problem. Target sound event
classes were selected based on the frequency of the obtained
labels, to ensure that the selected sounds are common for an
acoustic scene, and there are sufficient examples for learning
acoustic models.

III. TUT ACOUSTIC SCENES 2016

TUT Acoustic Scenes 2016 dataset consists of 15 different
acoustic scenes: lakeside beach, bus, cafe/restaurant, car, city
center, forest path, grocery store, home, library, metro station,
office, urban park, residential area, train, and tram. All audio
material was cut into segments of 30 seconds length.



Fig. 2. Database partitioning into training and evaluation sets

A. Cross-validation setup

The dataset was split into development set and evaluation
set, such that the evaluation set consists of approximately
30% of the total amount. The development set was further
partitioned into four folds of training and testing sets to be used
for cross-validation during system development. This process
is illustrated in Fig. 2. For each acoustic scene, 78 segments
were included in the development set and 26 segments were
kept for evaluation.

The partitioning of the data was done based on the location
of the original recordings. All segments obtained from the
same original recording were included into a single subset
- either development or evaluation. This is a very important
detail that is sometimes neglected, and failing to recognize
it results in overestimating the system performance, as the
classification systems are capable of learning the location-
specific acoustic conditions instead of the intended general
audio scene properties,. The phenomenon is similar to the
”album effect” encountered in music information retrieval, that
has been noticed and is usually accounted for when setting up
experiments [19]. The cross-validation setup provided with the
database consists of four folds distributing the 78 segments
available in the development set based on location.

B. Baseline system and evaluation

The baseline system provided with the database consists
of a classical mel frequency cepstral coefficient (MFCC) and
Gaussian mixture model (GMM) based classifier. MFCCs were
calculated for all audio using 40 ms frames with Hamming
window and 50% overlap and 40 mel bands. The first 20
coefficients were kept, including the 0th order coefficient.
Delta and acceleration coefficients were also calculated using a
window length of 9 frames, resulting in a frame-based feature
vector of dimension 60. For each acoustic scene, a GMM class
model with 32 components was trained based on the described
features using expectation maximization algorithm. The testing
stage uses maximum likelihood decision among all acoustic
scene class models. Classification performance is measured
using accuracy: the number of correctly classified segments
among the total number of test segments. The classification
results using the cross-validation setup for the development
set is presented in Fig. 3: overall performance is 72.5%, with
context-wise performance varying from 13.9% for park to
98.6% for office.
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Fig. 3. TUT Acoustic Scenes 2016: Baseline system performance on
development set

IV. TUT SOUND EVENTS 2016

TUT Sound Events 2016 dataset consists of two common
everyday environments: one outdoor - residential area - and
one indoor - home. These are environments of interest in
applications for safety and surveillance (outside home) and
human activity monitoring or home surveillance. The audio
material consists of the original full length recordings that are
also part of TUT Acoustic Scenes.

Target sound event classes were selected based on the
frequency with which they appear in the raw annotations and
the number of different recordings they appear in. Mapping
of the raw labels was performed, merging for example ”car
engine running” to ”engine running”, and grouping various
impact sounds with only verb description such as ”banging”,
”clacking” into ”object impact”.

The selected event classes and their frequency are listed in
Table I. It can be observed that in residential area scenes, the
sound event classes are mostly related to concrete physical
sound sources - bird singing, car passing by - while the home
scenes are dominated by abstract object impact sounds, besides
some more well defined (still impact) dishes, cutlery, etc. The
provided ground truth disregards all sound events that do not
belong to the target classes, despite them being present in
the audio. In this respect, we provide real-life audio with
annotations for selected event classes. For completeness, the
detailed annotations containing all available annotated sounds
are provided with the data, but the sound event detection task
is planned with the event classes presented in Table I.

TABLE I
TUT SOUND EVENTS 2016: MOST FREQUENT EVENT CLASSES AND

NUMBER OF INSTANCES

Residential area Home
event class instances event class instances
(object) banging 23 (object) rustling 60
bird singing 271 (object) snapping 57
car passing by 108 cupboard 40
children shouting 31 cutlery 76
people speaking 52 dishes 151
people walking 44 drawer 51
wind blowing 30 glass jingling 36

object impact 250
people walking 54
washing dishes 84
water tap running 47



A. Cross-validation setup

Partitioning of data into training and evaluation subsets was
done based on the amount of examples available for each event
class, while also taking into account recording location. Ideally
the subsets should have the same amount of data for each class,
or at least the same relative amount, such as a 70-30% split.
Because the event instances belonging to different classes are
distributed unevenly within the recordings, we can only control
to a certain extent the partitioning of individual classes. For
this reason, the condition was relaxed to including 60-80% of
instances of each class into the development set for residential
area, and 40-80% for home. The available recordings were
repeatedly randomly assigned to the sets until this condition
was met for all classes.

The development set was further partitioned into four folds,
such that each recording is used exactly once as test data. At
this stage the only condition imposed was that the test subset
does not contain classes unavailable in training. Residential
area sound events data consists of five recordings in the evalu-
ation set and four folds distributing 12 recordings into training
and testing subsets. Home sound events data consists of five
recordings in the evaluation set and four folds distributing 10
recordings into training and testing subsets.

B. Baseline system and evaluation

The baseline system is based on MFCCs and GMMs,
with MFCCs calculated using the same parameters as in the
acoustic scenes baseline system. For each event class, a binary
classifier was set up. The class model was trained using the
audio segments annotated as belonging to the modeled event
class, and a negative model was trained using the rest of the
audio. In the test stage, the decision is based on likelihood ratio
between the positive and negative models for each individual
class, with a sliding window of one second.

Evaluation of system performance for sound event detection
uses error rate and F-score in a fixed time grid, as defined in
[20]. In segments of one second length, the activities of sound
event classes are compared between the ground truth and the
system output. An event is considered correctly detected in
a given segment if both the ground truth and system output
indicate it as active in that segment. Other case are: false
positive if the ground truth indicates an event as inactive
and the system output indicates it as active, false negative
if the ground truth indicates it as active and the system output
indicates it as inactive.

Based on the total counts of true positives TP , false
positives FP and false negatives FN , precision, recall, and
F-score are calculated according to the formula:

P =
TP

TP + FP
, R =

TP

TP + FN
, F =

2PR

P +R
(1)

Error rate measures the amount of errors in terms of in-
sertions (I), deletions (D) and substitutions (S). A substitution
is defined as the case when the system detects an event in a
given segment, but gives it a wrong label. This is equivalent to
the system output containing one false positive and one false

TABLE II
TUT SOUND EVENTS 2016: BASELINE SYSTEM PERFORMANCE ON

DEVELOPMENT SET

Acoustic scene Segment-based Event-based
ER F [%] ER F [%]

home 0.95 18.1 1.33 2.5
residential area 0.83 35.2 1.99 1.6
average 0.89 26.6 1.66 2.0

negative in the same segment. After counting the number of
substitutions per segment, the remaining false positives in the
system output are counted as insertions, and the remaining
false negatives as deletions. The error rate is then calculated
by integrating segment-wise counts over the total number of
segments K, with N(k) being the number of active ground
truth events in segment k [21]:

ER =

∑K
k=1 S(k) +

∑K
k=1 D(k) +

∑K
k=1 I(k)∑K

k=1 N(k)
(2)

Event-based metrics consider true positives, false positives
and false negatives with respect to event instances. An event
in the system output is considered correctly detected if it has
a temporal position overlapping with the temporal position of
an event with the same label in the ground truth. A collar
of 200 ms was allowed for the onset, and for offset either
the same 200 ms collar or a tolerance of 50% with respect
to the ground truth event duration. An event in the system
output that has no correspondence to an event with same
label in the ground truth within the allowed tolerance is a
false positive, and an event in the ground truth that has no
correspondence to an event with same label in the system
output within the allowed tolerance is a false negative. Event-
based substitutions are defined differently than segment-based:
events with correct temporal position but incorrect class label
are counted as substitutions, while insertions and deletions are
the events unaccounted for as correct or substituted in system
output or ground truth, respectively. Precision, recall, F-score
and error rate are defined the same way, with error rate being
calculated with respect to the total number of events in the
ground truth.

Performance of the baseline system on the training and
development subset is presented in Table II. The results from
all folds were combined to produce a single evaluation, for
avoiding biases caused by data imbalance between folds [22].
While the segment-based performance is not discouraging, the
performance of this baseline system evaluated using event-
based metrics is extremely poor. This is easily explained by
the fact that the system does not use any specific segmentation
step, and it relies on the classifier to decide activity of sound
classes. The binary classification scheme is not capable of
detecting onsets and offsets within the evaluated tolerance. An
error rate over 1.0 is also an indication of the system producing
more errors than correct outputs.

A closer inspection of segment-based results reveals that
there is big difference in the capability of the system to detect
different classes. As can be seen in Table III, some classes are



TABLE III
TUT SOUND EVENTS 2016: SEGMENT-BASED F-SCORE CALCULATED

CLASS-WISE

Residential area Home
event class F [%] event class F [%]
(object) banging 0.0 (object) rustling 8.3
bird singing 33.8 (object) snapping 0.0
car passing by 59.9 cupboard 0.0
children shouting 0.0 cutlery 0.0
people speaking 30.6 dishes 4.3
people walking 2.8 drawer 8.1
wind blowing 14.2 glass jingling 0.0

object impact 22.8
people walking 18.3
washing dishes 24.6
water tap running 41.2

correctly detected in about a third of the segments, while for
car passing by the detection rate is over 50%. On the other
hand, the system completely fails to detect some classes. This
is not surprising, considering the simplicity of the system.

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a dataset for acoustic scene clas-
sification and sound event detection in real-world audio. The
development set for both is currently available for download
[23], [24], while the evaluation set will be published soon.
The provided database is more complex in terms of sound
event classes than previous ones, and was carefully collected
to obtain a high acoustic variability of acoustic scenes. We
recommend the use of the cross-validation setup for publishing
future results, as this will allow exact comparison between
systems. The provided cross-validation setup also ensures that
all audio recorded at the same location is placed in the same
subset, such that there is no data contamination between
training and testing sets.

Future work will extend this data in both acoustic scenes
and sound events. Other teams are invited to contribute to
the dataset, by using same recording and annotation princi-
ples. The annotation procedure will be developed to improve
annotation speed and and avoid ambiguity in sound event
labels. Additionally, inter-annotator agreement can be used to
combine the output from multiple annotators to minimize as
much as possible the subjectivity of the ground truth.
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