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ABSTRACT

Strong labels are a necessity for evaluation of sound event de-
tection methods, but often scarcely available due to the high re-
sources required by the annotation task. We present a method for
estimating strong labels using crowdsourced weak labels, through
a process that divides the annotation task into simple unit tasks.
Based on estimations of annotators’ competence, aggregation and
processing of the weak labels results in a set of objective strong
labels. The experiment uses synthetic audio in order to verify the
quality of the resulting annotations through comparison with ground
truth. The proposed method produces labels with high precision,
though not all event instances are recalled. Detection metrics com-
paring the produced annotations with the ground truth show 80%
F-score in 1 s segments, and up to 89.5% intersection-based F1-
score calculated according to the polyphonic sound detection score
metrics.

Index Terms— Strong labels, Sound event detection, Crowd-
sourcing, Multi-annotator data

1. INTRODUCTION

The research on sound event detection is currently dominated by
methods that learn acoustic models from weakly-labeled data [1, 2],
in which only presence of sound events is indicated, without explicit
temporal information. However, the task of sound event detection
is defined as recognizing and temporally locating sound instances
within a recording [3], which creates a mismatch between the train-
ing and the requirements imposed on the system. The main cause of
this situation is the lack of suitable datasets containing strong labels,
that indicate both textual labels and temporal boundaries of events.

While training of acoustic models can be achieved with ad-
vanced learning methods using weakly-labeled real-life recordings
or strongly-labeled synthetic audio mixtures, the evaluation of such
methods still requires strongly-labeled data. Typically, a small
amount of data is manually annotated for evaluation. In recent data
evaluation challenges, the evaluation data consisted of short record-
ings, of length 10 seconds [2], while earlier ones used recordings
of 3-5 minutes [4]. Such annotation efforts were concentrated to
individual research groups, resulting in datasets of small size. The
most recent work introduces strong labels for a part of AudioSet [5],
providing 67k manually annotated clips. The length of these clips
is 10 s, and they contain on average 3.5 labels [6].

Manual annotation of sound events is subjective in many ways,
from the textual labels selected for the sound [7], to the placing of
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temporal boundaries for the event instances [3]. Ideally, an objec-
tive reference annotation is based on multiple annotators or cura-
tion, but curation of strong labels is difficult. For example in [6], a
first-pass labeling was reviewed by a different annotator who could
modify the labels, but even with 5 stages this process rarely con-
verged to consensus. On the other hand, multiple, independent an-
notators should be followed by a method for aggregating the infor-
mation. In image analysis, aggregation is usually done as intersec-
tion of segments [8] or by maximizing agreement between annota-
tors [9]. For audio, it is rare to have data with multiple annotators;
in particular, strong labeling is impractical for multi-annotator so-
lutions because of the difficulty of the task.

An attractive solution for annotating large amounts of data, in-
creasingly used for audio annotation, is crowdsourcing [10, 11, 12].
Crowdsourcing is suitable for simple annotation tasks like classifi-
cation, with a number of services offering ready-made solutions for
it, but these are not suitable in their current form for strong labeling.

In this paper, we propose a method for creating strong labels
based on weak labels of overlapping segments. Weak labeling al-
lows use of crowdsourcing, facilitating annotation of high volume
of audio files in a fast way. The novelty of this work is threefold:
1. We introduce a novel, proof of concept, method for crowdsourc-
ing strong labels, by estimating the strong labels based on audio
tags (weak labels); 2. We evaluate the correctness of the collected
annotation with respect to the ground truth, by using synthetically
generated audio mixtures for which the reference annotation is gen-
erated at the same time with the audio mixtures; 3. We investigate
the effect of reference annotations on the evaluated performance of
sound event detection systems by using the ground truth annotations
in training, but evaluating against the manually created reference
annotation.

We show that it is possible to obtain reasonable strong labels
by crowdsourcing segment-level tags and further processing them.
The resolution of the estimated labels is determined by the degree
of overlap of consecutive segments. We use annotator competence
estimation [13] to eliminate the poor quality answers from the col-
lected data before further processing. We also show that the mis-
match between the synthetic ground truth and the manually created
annotation produces a significant drop in measured performance,
even though it does not affect system functionality. All data pro-
duced and collected in this study is publicly available.1 The paper
is organized as follows: Section 2 presents the proposed annotation
procedure and data processing to estimate the strong labels. Section
3 presents the experimental setup, dataset, annotattion process, and
analysis of the collected annotations. Section 4 shows the use of
crowdsourced annotations in evaluation of a sound event detection
system. Finally, Section 5 presents conclusions and future work.
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Figure 1: Estimating event activity from overlapping weakly-
labeled segments.

2. ANNOTATION METHOD AND PROCESSING

2.1. Annotation method

In order to elicit a consistent behavior from annotators and produce
a consistent output, an annotation task should require a single, sim-
ple decision [3]. Annotating audio with strong labels by requiring
from the annotator textual labels for sounds, along with onset and
offset for each sound instance, is the exact opposite. We propose
a procedure that divides the strong annotation task into unit tasks
that involve simple decision-making: to indicate presence of sounds
from a pre-selected list labels in pre-segmented audio [3], practi-
cally weakly labeling individual segments. In addition to simplify-
ing the work of the annotator, this approach makes the annotation
task suitable for crowdsourcing. The audio files are segmented into
short, overlapping segments, which are then annotated with weak
labels by indicating binary activity of sound events within the entire
segment. The list of target sound classes is selected in advance and
presented to the annotator. The proposed method, illustrated in Fig.
1, uses a sliding “annotation window” over the length of the au-
dio file, with a high rate of overlap between consecutive segments.
The temporal activity of sounds within the original long file can
then be estimated based on the tags of the individual segments, by
reconstructing the temporal sequence of these segments into an ag-
gregated representation that counts activity indicators at each time
step. If all annotations are correct, event boundaries correspond to
the boundaries of the maximum-valued region in the count-based
activity indicators.

In this work, we choose a segment length of 10 seconds. We
rely for this choice on studies that show accurate recognition of
sound sources to be at most 6.8 seconds for a list of 42 different
sounds [14]. With a hop of one second between the segments, the
temporal reconstruction of the events activity will have a one second
resolution, similar to the diffuse labels created in [6]. Following the
procedure from [10], which was also used in [15], the task is pre-
sented as a single-pass multi-label annotation, in which the presence
of a sound is explicitly indicated, and the absence is implicit by the
label not being selected.

2.2. Annotator competence and ground truth estimation

Multiple annotator opinions are typically aggregated using majority
vote in order to estimate reference labels for the data [10, 12]. In
this work we use MACE - Multi-Annotator Competence Estimation

event class instances

car horn 109
children voices 236
dog bark 343
engine idling 564
siren 256
street music 89

Table 1: Number of instances of each event class in the data

[13] to identify the trustworthy annotators and to predict the labels.
MACE models the behavior of the annotators in order to estimate
the competence of the annotators and the true labels of the data. An-
notator behavior is modeled using a binary variable drawn from a
Bernoulli distribution, encompassing the annotator trustworthiness
and the spamming behavior. The true labels and the spamming in-
dicators are estimated based on the observed annotations, using ex-
pectation maximization. For complete details on the model assump-
tions and the method, we refer the reader to [13]. In the estimation
of the true labels, the annotators’ opinions are weighted based on
their competence, in contrast to majority voting where each annota-
tor’s opinion has the same weight. The method has been extended
for the audio tagging scenario in our previous work, by consider-
ing each multi-labeled item as a set of binary yes/no labels per item
[15]. Each (item, label) pair is used as a separate annotator opinion,
for which MACE estimates the true label. This approach models the
single-pass multi-label annotation as a multiple-pass binary annota-
tion [10]. The method was shown to recognize well the spamming
behavior of annotators in audio tagging [15], providing a satisfac-
tory level of inter-annotator agreement when the least competent
annotators’ opinions are removed from the data pool.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Dataset and annotation procedure

Audio files are generated using Scaper [16], with small changes
to the synthesis procedure. A soundscape is generated by plac-
ing events iteratively at random intervals until the desired maxi-
mum polyphony of 2 is obtained. Intervals between two consec-
utive events are selected at random, but limited to 2-10 seconds.
Event classes and event instances are chosen uniformly, and mixed
with a signal-to-noise ratio (SNR) randomly selected between 0 and
20 dB over a Brownian noise background. Having two overlap-
ping events from the same class is avoided. Foreground events are
extracted from the UrbanSound dataset [17]. The dataset includes
classes: car horn, children playing, dog bark, engine idling, siren,
and street music, with children playing renamed to children voices
for the annotation task, and files shorter than one second or longer
than 60 seconds discarded. The classes were selected to mimic the
street scenes annotated in [15]. Dataset statistics are presented in
Table 1.

The dataset consists of 20 generated soundscapes, each having
a length of 3 minutes. The resulting files are cut into 10 second
segments with 1 second offsets, resulting in 171 segments from a
single 3 minute soundscape, and a total number of 3420 10-second
clips to be annotated. Each individual 10 s segment was consid-
ered as an independent annotation task, provided on Amazon Me-
chanical Turk as one HIT (Human Intelligence Task). In order to
prevent the same worker annotating overlapping segments, the data
was split into batches containing segments located at least 15 sec-
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Figure 2: Annotator competence estimated using MACE.

onds apart in the original audio. The batches were then launched
one at a time, and workers that already performed at least 50 hits
in previous batch(es) were disqualified from working on the task.
A payment of $0.10 was offered per HIT. Worker qualification was
requested as at least 1000 completed HITs with average approval
rating of at least 85%. One HIT consisted of listening to the pro-
vided audio excerpt and indicating which sounds are present in it,
from the given list of six classes or “none of the above”. The num-
ber of playbacks allowed was not limited. No visualization (e.g.
spectrogram) was provided. Workers were instructed to complete
the task using headphones, and in a quiet environment. Before the
job, they were also provided short descriptions for every class, and
four example sounds that contained events from all classes. The
complete data annotation task was performed by 680 workers, with
each 10 s segment being annotated by 5 workers. All jobs were
accepted, in order to study the annotator behavior.

3.2. Analysis of annotation outcome

The correctness of the collected audio tags with respect to the gen-
erated reference labels was evaluated by considering the annotated
segments individually. When the multiple opinions per segment are
aggregated through majority vote, the comparison of the resulting
tags with the ground truth achieves 68% F-score, with 98% preci-
sion, 52% recall. Using MACE to predict the true labels provides
86% F-score, with 97% precision and 77% recall, while union re-
sults in 78% F-score, with 70% precision and 89% recall. The rel-
atively small recall indicates that many sounds are not annotated,
possibly not being perceived in the audio mixture. With the major-
ity vote, only slightly over half of the tags are found, while MACE
raises the number of the tags correctly recalled to over three quar-
ters. On the other hand, the very high precision indicates that the
sounds which are labeled are labeled correctly. To keep this study
focused on the annotation method itself, we do not analyze here the
influence of SNR on recall. We note, however, that similar anno-
tator behavior was observed as polyphony increases for annotators
that selected onset and offset of sound instances [18].

The annotator competence analysis performed by MACE, pre-
sented in Fig. 2, reveals that 33 annotators have answered randomly,
while 247 have a competence over 0.9. Inter-annotator agreement,
measured using Krippendorff’s alpha is 0.57. Eliminating anno-
tators with low competence increases the agreement, e.g. a com-
petence threshold of 0.6 increases α to 0.72, while a threshold of
0.8 increases α to 0.80. For further experiments, we use a compe-
tence threshold of 0.6, which keeps approximately 80% of annota-
tors (538 of 680 annotators).

3.3. Estimation of strong labels

The temporal activity patterns of sound events is constructed as ex-
plained in Section 2, by stacking the annotated segments in their
original order. In the basic setup, 5 opinions per 10 s segment re-
sult in 50 opinions for each 1 s of the estimated temporal activity

Mel spectrogram

Count-based activity indicators

Estimated strong labels

Figure 3: Estimation of strong labels based on the weak labels of
consecutive, overlapping, audio segments.

(except the first and last 10 s of the original files). We estimate the
temporal activity in three ways:

1. using data from all annotators, as explained above, with 50
opinions per 1 s segment.

2. using only annotators with competence higher than 0.6 (ob-
tained using MACE). In this case, due to eliminating some
of the annotations, the number of opinions per 1 s segment
varies, being 37 on average

3. using the tags estimated using MACE as explained in Section
2. In this case there is one opinion per 10 s segment (the
MACE output), resulting in 10 opinions per 1 s.

The resulting representation is then binarized using a threshold ap-
plied in each 1 s segment. Instead of the theoretical maximum value
M for each 1 s, we use a threshold of 80%, to accommodate possible
incorrect answers from the annotators. This reflects the proportion
of annotators with an estimated competence over 0.6, as presented
in Section 3.2. A sound event is therefore considered active in a
1 s segment if at least 80% of opinions available for that segment
considered it active. Fig. 3 presents an example of this process,
along with the ground truth for comparison. The quality of the re-
sulting strong labels is evaluated by calculating detection metrics
between them and the ground truth. For this, we calculate ER and
F1 in 1 s segments (ER 1s, F1 1s), following the sound event eval-
uation procedure from DCASE Challenge [4], and the intersection-
based F-score as defined in [19]. For the latter, we use two sce-
narios, as defined in DCASE 2021 Challenge Task 42, with differ-
ent criteria for the detection tolerance criterion (DTC) and ground
truth intersection criterion (GTC): DTC=GTC=0.7 (F1 dtc=0.7)
and DTC=GTC=0.1 (F1 dtc=0.1). For details on the parameters and
their effect, we refer the reader to [19]. The results are presented in
Table 2.

A comparison of the estimated and the ground truth labels is
presented in Fig. 4. This example shows that the proposed method
has difficulty in estimating correctly the temporal activity for the
short sound events. Even though most of the sounds in the example
are identified, the high mismatch between the temporal boundaries
of the short sounds will increase segment-based error rate and de-
crease F-score (as false positives or insufficient intersection). A
more lenient intersection criterion (PSDS with DTC=0.1) results in
an F-score of almost 90% for the best case.

2http://dcase.community/challenge2021/task-sound-event-detection-
and-separation-in-domestic-environments#evaluation
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labels based on ER1s S D I F11s P R F1dtc=0.7 F1dtc=0.1

all annotators 0.55 0.01 0.51 0.03 62.6 91.2 47.7 39.0% 67.4%
competence > 0.6 0.44 0.02 0.36 0.05 72.6 88.9 61.3 44.0% 81.3%
MACE 0.36 0.02 0.19 0.14 80.1 82.3 77.9 41.2% 89.5%

Table 2: Sound event detection scores between the estimated strong labels and the ground truth.

Figure 4: Visual comparison of generated and estimated labels

3.4. Discussion

A close analysis of the detection scores reveals that when relying on
the majority vote among all annotators, the error rate is composed
mostly of deletions, with only a small proportion of insertions and
substitutions. This was expected based on the results from section
3.2, which indicated that many sounds were not annotated (recall
52%). MACE introduces many labels compared to the other meth-
ods, thus reducing deletions, but creates insertions because not all
these labels are correct. The same trend can be seen in the dynamics
shift of precision and recall: while the labels estimated based on all
annotators have a high precision of 91.2%, but only 47.7% recall,
MACE obtains a recall of 77.9% at the cost of reducing precision
to 82.3%. Since tags produced by MACE for the 10 s segments had
86% F-score, with about one quarter of tags missing (recall 77%),
a detection F-score of 89.5% (80.1% segment-based) between the
estimated strong labels and ground truth ones means a very good
match, provided that the missing tags may correspond to sound in-
stances that were not perceived by the annotators.

4. SOUND EVENT DETECTION

As an additional experiment, we test how the mismatch between
the estimated and synthetically generated strong labels affects SED
evaluation. We use the system ranked best in the sound event de-
tection task of DCASE 2017, where a similar amount of data was
available. The system is a simple CRNN composed of 3 convolu-
tion blocks, each followed by batch normalization and max-pooling
layers. The final two layers are composed of bi-directional gated
recurrent units (GRU), in order to learn the temporal activity pat-
terns. For more details of the model, we refer the reader to [20].
The system is trained using the audio data and the ground truth la-
bels generated using Scaper. In order to use as much training data
as possible, the train/test procedure follows a leave-one-out setup,
in which one file is kept for testing, in turn, and the other 19 files
are used for training and validation (18 for training, one for valida-
tion). The system output is evaluated against three different types
of reference annotations:

1. Generated strong labels (ground truth)
2. Strong labels estimated using annotators with a competence

higher than 0.6 (case 2 from Sec. 3.3)
3. Strong labels estimated using MACE (case 3 from Sec. 3.3)

eval. reference ER1s F11s F1dtc=0.7 F1dtc=0.1

GT 0.49 64.8% 26.4% 39.6%
estim.comp.>0.6 0.78 49.1% 12.5% 31.2%
estim. MACE 0.65 52.2% 13.0% 31.1%

train&eval MACE 0.58 55.9% 16.4% 40.3%

Table 3: Evaluation against different sets of strong labels

The results, evaluated using detection metrics, are presented in Ta-
ble 3. We consider as a baseline performance the system trained
and evaluated using the generated labels. Its error rate and F-score
align well with the performance reported on other synthetic data,
e.g. UrbanSED (F11s approximately 60%) [16] and DCASE 2016
synthetic audio task (top systems had ER1s 0.33-0.40 and F11s 78-
80%) [21]. When evaluated against the human-produced labels, the
drop in measured performance is significant, even though what we
evaluate is the exact same system output. If the same system is
trained and evaluated using the estimated strong labels based on
MACE, the measured performance is closer to the baseline perfor-
mance (last row in Table 3). However, this system is trained and
tested on approximately half the sound instances, as indicated by
the low recall of the annotation process. These results show once
more that the quality of annotations is a limiting factor not only in
the training stage, but also for performance evaluation. The pre-
sented experiment is a typical situation, training SED systems on
synthetic audio with correct and complete strong labels for training,
and testing it on real-life recorded data. In addition to the presented
effect of incomplete labels, testing on real recordings will introduce
errors due to the mismatch in acoustic data. The presented system
is a rather simple one, not considered state-of-the-art, therefore the
effects of a weak system and the incomplete annotation are com-
bined in the evaluated performance. However, we expect a similar
effect of the annotations on more powerful systems too.

5. CONCLUSIONS

As sound event detection applications are moving towards systems
applicable in real-life, a limiting factor of the development is the
data annotation process. Even though training of systems can be
achieved without strongly-labeled data, manually annotated data is
necessary for evaluating the system behavior on real recordings cor-
responding to the user scenario. To alleviate the burden and subjec-
tivity of manual annotation, we presented a method that can produce
strong labels through crowdsourcing. Based on annotator com-
petence estimation, a good, though incomplete, set of labels was
produced. The resulting aggregated annotation is objective, being
composed of multiple opinions. In future work, we will investi-
gate further optimization of MACE for the case of strong labels,
and investigate methods for producing the minimum amount of la-
bels necessary for a reliable estimation, to reduce the redundancy of
annotations where possible.
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