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Abstract—Crowdsourcing has become a common approach
for annotating large amounts of data. It has the advantage of
harnessing a large workforce to produce large amounts of data
in a short time, but comes with the disadvantage of employing
non-expert annotators with different backgrounds. This raises the
problem of data reliability, in addition to the general question
of how to combine the opinions of multiple annotators in order
to estimate the ground truth. This paper presents a study of
the annotations and annotators’ reliability for audio tagging.
We adapt the use of Krippendorf’s alpha and multi-annotator
competence estimation (MACE) for a multi-labeled data scenario,
and present how MACE can be used to estimate a candidate
ground truth based on annotations from non-expert users with
different levels of expertise and competence.

I. INTRODUCTION

Annotated audio is a fundamental component in training and
evaluation of sound classification. Given the recent advances
in environmental sound classification, including sound events
classification, tagging, and detection, coupled with the use of
deep learning-based solutions, availability of large datasets has
become a crucial necessity. While unsupervised learning [1]
or automatic methods for predicting labels [2] can provide
an alternative to human-annotated data at the training stage,
annotated data still plays an important role evaluation [3].

Manual annotation of audio requires repeated listening of
the given sample in order to annotate it, and relying on expert
annotators makes it a slow process. For this reason, crowd-
sourcing has emerged as an attractive method for increasing
the volume of data [4]-[6]. Its disadvantage is mainly that it
relies on non-expert annotators, who may provide incorrect
or inconsistent labels. A common processing of such multi-
annotator labels in order to create the reference annotation
is to aggregate them using a majority vote (consensus), as
done for example in the case of OpenMIC 2018 dataset
for instrument recognition [6] or proposed for environmental
sound classification in [4].

Still, because annotating audio requires both time and
resources, having multiple annotators describe each data point
remains relatively rare. In the audio domain, the CHIME-
Home dataset [7] was obtained using three annotators, and
the final annotation was created as a majority vote. Another
example is the DCASE 2013 Office Live dataset that was
annotated by two persons, with both annotation sets provided
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with the data; within the challenge, submitted systems were
evaluated against each annotator separately, and then the
performance was averaged [8]. Multiple expert annotators are
more common in medical imaging for automatic diagnostic
algorithms. Methods for fusing the expert annotator opinions
include different strategies, from simple ones like intersection
and union [9], to complex ones that estimate an optimal ground
truth using expectation-maximization as done in STAPLE [10]
or maximizing the joint agreement between annotators [11].
The method used to estimate the ground truth was found to
have a significant effect on the evaluated performance of the
system, with STAPLE causing underestimation of performance
when only few annotations are available, and consensus over-
estimating it [12].

In this paper, we tackle an important research problem
that has not been yet addressed in the audio domain, namely
how to aggregate opinions from non-expert annotators with
different backgrounds and levels of expertise in order to
create a reliable ground truth for training sound classifiers.
We use a subset of the publicly available TAU Urban Acoustic
Scenes 2019 dataset [13] that we annotate using sound event
tags. We estimate annotators’ competence and inter-annotator
agreement using established statistical tools, and compare
different aggregation procedures for creating the reference
annotation. We show that a low agreement does not necessarily
reflect a low annotator reliability, instead it partly reflects the
difficulty of the annotation task.

The paper is organized as follows: Section II introduces
the annotator competence and agreement measures we will
use in our analysis, Section III presents the data we use and
the annotation process, Section IV presents the analysis of
the collected data and further experiments. Finally, Section V
presents conclusions and future work.

II. ANNOTATOR AND ANNOTATION ANALYSIS

We propose to adapt and employ a collection of methods
that are more familiar to those working in computational
linguistics. Labeling is the process of assigning a label to an
item by an annotator. In our study, we deal with multi-label
annotation, i.e. an item (in our case an audio file) is assigned
one or multiple labels from a pre-defined set of labels.

The largest datasets for audio classification typically rely
on user-generated material available as web audio, for which
labels can be inferred from user-generated data. For example



AudioSet [2] consists of automatically labeled and partially
verified audio, but has an estimated label error of above 50%
for 30% of its classes'; FSDnoisy18k [5] was crowdsourced
and a subset of it was curated by experts. These are two
examples showing the trade-off between accepting noisy labels
and the effort necessary for curation. The reliability of the
annotation process for audio data and its outcome, rarely
analyzed before, is something we aim to do in this study.

A. Annotator competence estimation

When a large pool of annotators that annotate partially the
same data is available, the competence of these annotators can
be estimated using MACE - Multi-Annotator Competence Es-
timation [14]. The method allows identification of trustworthy
annotators and prediction of correct underlying labels, by using
an unsupervised model that learns from redundant annotations.

The model considers that annotator j produces label A;; on
instance ¢. The annotated label depends on the true label 75,
and whether annotator j is spamming (selecting the answer
at random). Annotation behavior is modeled by binary vari-
able S;; drawn from a Bernoulli distribution with parameter
(1 — 6;). The behavior assumes that when an annotator is
not spamming on instance % (S;; = 0), the annotation Aj;;
corresponds to the true label. When the annotator is spamming,
Si; =1, A;; is sampled from a multinomial distribution with
parameter vector {;. The annotations A;; are observed, the true
labels T; and the spamming indicators S;; are unobserved. The
model parameter ; specifies the probability of trustworthiness
for annotator j, while £; determines the spamming behavior
of annotator j.

The model parameters are estimated using the expectation
maximization algorithm, to maximize the probability of the
observed data [14]:
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where A is the matrix of annotations, S is the matrix of
competence indicators, and T is the vector of true labels. The
method was shown to produce predicted labels very accurately
in comparison with ground truth data on a few tasks. At the
same time, the model’s §; was shown to correlate strongly
with annotator proficiency [14].

We use MACE to study the behavior of our annotators and
to predict different sets of aggregated labels. It is important to
note that MACE does not discard annotators, but weighs their
opinion based on their competence, which results in a different
procedure than majority voting which trusts and weighs all
annotators equally.

B. Inter-annotator agreement

Many measures that assess inter-annotator agreement are
developed for only two annotators. In addition, simple mea-
sures like percentage of agreement or correlation suffer from

ISee https://research.google.com/audioset/dataset/index.html for an expla-
nation of the quality assessment. Information accessed January 2021

various biases related to chance agreement and statistical
independence of annotators and annotated data [15]. We select
for our analysis Krippendorff’s alpha as a general agreement
metric that is able to cope with more than two annotators per
item and with missing data (overlap in annotated items only
among few of the annotators).
Krippendorff’s alpha is defined as:
D,
a=1 D,
where D, is the observed disagreement and D, is the expected
disagreement. In the case of multiple annotators m, multiple
nominal categories, and missing values, the formulation uses
nominal o defined as [16, pp.230-231]:
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is the number of observed coincidences of two categories c
and k assigned to the same item by two different annotators,
and m,, is the number of values assigned to item u (number of
annotators that labeled this item). Observed coincidences are
calculated based on a coincidence matrix that considers the
annotators interchangeable, therefore pairing the contingencies
in both directions: if x.x is the number of times a particular
observer uses ¢ while the other uses k, then the number of
coincidences iS O = Lok + The.

Krippendorff’s alpha is reported in [4] for annotation of
audio, but no discussion on its values for the annotated
data is provided. Krippendorff’s alpha has been also used to
measure inter-annotator agreement for images [17] and video
annotations [18].

III. MULTI-ANNOTATOR DATA COLLECTION

The dataset used in our experiments is a subset of TAU Ur-
ban Acoustic Scenes 2019 [13], consisting of audio from three
acoustic scenes (airport, public square, and park). The audio
files are 10 seconds long, and some of them are consecutive
segments of one long recording from a single location. Each
audio file was annotated by five different annotators, following
a single-pass multi-label annotation procedure [4], in which
the annotator selected for one audio file a number of labels
presented as a list. Candidate labels were birds singing, dog
barking, adults talking, children voices, traffic noise, music,
footsteps, siren, announcement speech and announcement jin-
gle. According to the annotation procedure, a positive label is
explicitly provided by the annotator, while a negative label is
implicit, by not being selected.

The annotation platform was a simple web-based interface
that presented users with audio files to annotate one by one.
Annotators registered using their email, which permitted the
annotation process to be paused and resumed later on next
login. A set of instructions and examples of annotation were
provided at the beginning. Annotators were instructed to work



TABLE 1
ANNOTATION MATRIX EXAMPLE WITH EXPLICIT/IMPLICIT ANNOTATIONS
PRODUCED BY m ANNOTATORS
items (file, label) \

12 | 4] . |m

airport-Paris-0, footsteps 1 1
airport-Paris-0, adults-talking | 0 0

OO | W
'

airport-Paris-0, dog-barking | -

airport-Helsinki-4, footsteps 1 1

in small batches and to use good quality headphones. It was
allowed to listen to each audio file multiple times before
selecting one or more of the candidate labels. A total of 133
annotators, students taking an audio signal processing course,
were randomly assigned a maximum of 131 files to annotate.
The total number of files annotated is 3930. Annotators were
assigned into 30 groups, aiming that each group will provide
annotations to the same set of files.

Because neither MACE nor the inter-annotator agreement
metrics are defined for multi-labeled items, we represent the
annotations as a set of binary yes/no labels per file, with
explicit/implicit presence as explained before. In consequence,
each (file, label) pair is considered an independently annotated
item, equivalent to a multiple-pass binary annotation [4]. How-
ever, because the annotation process did not request producing
the labels themselves, we consider that this assumption has
sufficient grounds. Complete annotations are represented as a
matrix containing the answers of all annotators, illustrated in
Table 1. Each row refers to a (file, label) item, and each column
represents the answer of one annotator in the format [0, 1, —],
marking the presence (1, explicit) or absence (0, implicit) of
this label within the audio file; ”—"" indicates that this file was
not assigned to this specific annotator. The resulting matrix
contains a total of 39300 items.

IV. DATA ANALYSIS

We first consider the aggregation of multiple annotations.
The simplest one, union, assigns a label to a file if at least
one of the annotators has considered it active. The most
commonly used aggregation method, majority vote, assigns
a label to a file if most annotators have considered it active.
The statistics of the resulting classes are presented in Table
II for the individual classes (first two columns), while Fig. 1
shows the resulting number of labels per file. The resulting
annotations are largely unbalanced, with the most common
label adults talking being assigned to 3168 files, and least
common announcement jingle to 116 files. Majority voting
reduces their frequency in the resulting annotation to 2401
and 8, respectively.

A. Predicting ground truth with MACE

As explained, MACE predicts the true labels by estimating
the annotators’ competences and their effect on the true labels
within the same model. This creates a weighing procedure on
the different opinions which is dependent on how trusted the
respective annotator is. In addition, the produced estimation
for ground truth can be constrained using a threshold n, with

TABLE II
STATISTICS OF CLASS LABELS RESULTING FROM DIFFERENT METHODS OF
COMBINING THE MULTIPLE ANNOTATIONS

class labels | union | maj. vote | MACE | MACE@90

adults talking | 3168 2401 2983 2831
footsteps | 2560 859 1969 1583
traffic noise 2418 680 1713 1178
children voices 1467 513 1046 821
birds singing | 1332 672 1035 855
music 306 106 212 174
ann. speech 273 73 148 108
dog barking 177 42 108 79
siren 177 38 99 61
ann. jingle 116 8 38 16
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Fig. 1. Average number of labels per file produced by different approaches
to estimate the true labels: union, majority vote, MACE, and MACE @90

MACE@n containing the n% of predicted labels for which
the method is most confident [14].

The resulting statistics of the estimated ground truth in terms
of number of produced labels and number of labels per file
are presented in Table II and Fig. 1 for comparison with the
union and majority vote. With MACE, the number of labels
estimated for the ground truth is significantly higher than using
majority vote for all categories, indicating that for some cases
a minority of annotators is reliable enough to justify the label.
Even when eliminating the least confident 10% of predictions
(MACE@90), the number of resulting labels is higher than
with the majority vote, showing that this method has the
potential to overcome the problem of missing labels caused by
an insufficient number of votes, which can cause label noise
for learning [19].

B. Annotator competence analysis

The estimated competence of our annotators, obtained using
MACE, is illustrated in Fig. 2. We observe that there are a
number of annotators that are highly trustable (64 over 0.8),
while a small number of them have much lower estimated
competence. Even though the annotators do seem mostly
reliable, the agreement on the labels is not very high, with
Krippendorff’s alpha for the entire dataset being 0.696.

We hypothesize that inter-annotator disagreement can come
from two sources. One is the annotator competence: an anno-
tator who does not pay attention to the task and completes it at
random will not have high agreement with an annotator who is
very diligent about the task. A second source of disagreement
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Fig. 2. Annotator competence estimated using MACE

is the annotator’s personal experience and perception. Experi-
ments in cognitive psychology have shown that life experience
brings much subjectivity in categorization [20]. The audio data
in our experiment is recorded in the wild, with no control over
the sound sources present, their prominence in the scene and
their overlaps, which makes it rather difficult to annotate and
allows personal interpretation. In addition, some studies have
shown that visual stimuli help with audio annotation [21], but
our experiment did not provide any visual information.

In absence of the gold standard (which would allow us
to estimate the upper bound for agreement and evaluate the
estimated ground truth), we simulate the lower bound. We sim-
ulate a group of spammer annotators for the task, that provide
yes/no indicators per file for the set of 10 labels. We create
150 random annotators, with each being randomly assigned a
number of 130 files from the set of 3930 available. We then
analyze their output in terms of labels statistics, majority vote,
MACE competence, and inter-annotator agreement metrics.

The estimated competence of these spammers, presented in
Fig.2, shows that even though the real annotators disagree
on the labels, they are in fact diligent and not answering
at random. The distribution of labels per file for the random
annotators is much more uniform, and inter-annotator agree-
ment (Krippendorff’s alpha) is practically 0. This suggests
perception differences as being the main cause of disagreement
of annotators, but because we cannot separate the effects of
the two in the data, we cannot draw a definite conclusion.

C. Inter-annotator agreement and improving data reliability

Krippendorff’s alpha was calculated for the overall data, and
separately for each class. The results are presented in Table III.
We observe a wide variation in the class-wise agreement, with
the highest agreement on the more rare dog barking class. On
the other hand, the more frequent classes footsteps and traffic
noise have similar frequency in our data but very different
agreement values. Their different acoustic characteristics also
indicate perception as a reason for disagreement, as explained
in the previous paragraph.

A straightforward way to improve the data reliability when
we have knowledge about annotators competence is to elim-
inate annotations produced by the least trusted annotators,
in order to obtain a set of annotations which is produced
by the most reliable ones. Of course, gradual elimination of
annotators will result in a reduced set of annotations available,
until the extreme case of having only a single annotator. Table
IIT presents the calculated alpha for the case of only using

TABLE III
KRIPPENDORFF’S ALPHA FOR SELECTED SUBSETS OF ANNOTATIONS

class-wise | all annot | competence> 0.6 | competence> 0.8
adults talking 0.676 0.690 0.717
footsteps 0.271 0.284 0.236
traffic noise 0.590 0.607 0.635
children voices 0.712 0.714 0.729
birds singing 0.613 0.619 0.657
music 0.606 0.615 0.679
ann. speech 0.485 0.501 0.548
dog barking 0.713 0.730 0.764
siren 0.550 0.569 0.624
ann. jingle 0.404 0.430 0.525
overall | 0.696 | 0.708 | 0.745
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Fig. 3. Alpha values when gradually removing annotators with competence
values under a given threshold, until only one is left

annotators with estimated competence of at least 0.6 (124
annotators) and at least 0.8 (64 annotators).

All agreement values increase when using the more reliable
annotators, except for footsteps, while the overall agreement
increases significantly when using the top annotators. Figure
3 shows the evolution of o when annotators under a given
competence are gradually eliminated, with the final case being
a single annotator. As a comparison, we note that standards
adopted in social sciences consider a 0.8 agreement reason-
able, and consider values between 0.667 and 0.8 only for
drawing tentative conclusions. However, Krippendorff argues
that the acceptable level of agreement must be chosen de-
pending on the costs of drawing invalid conclusions [16, p.
241]. Therefore we can state that the employed methods allow
creating reference annotations that can be trusted for training
and evaluation of acoustic models, compared to noisy data”.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a study of annotator and annotations
reliability for crowdsourced audio tags. We showed that the
aggregation of raw multi-annotator labels using annotator
competence estimation produces a plausible and trustable
ground truth, with gradually improving levels of agreement in
the data. However, in our experiment we cannot evaluate the
correctness of the estimated ground truth. For this reason, we
plan to repeat this experiment in controlled conditions, using
generated synthetic data for which ground truth is produced at
the same time with the audio. We will try to mimic as closely
as possible the classes and acoustic characteristics of the data
used in the presented experiment.

2The MATS (Multi-Annotator Tagged Soundscapes) dataset is available at
https://doi.org/10.5281/zenodo.4774959
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